首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
阿尔茨海默病(Alzheimer’s disease,AD)是一种与年龄有关的神经退行性疾病,严重危害老年人的身心健康,给社会带来巨大的经济压力。但目前其发病机制尚不完全明确,临床仍无根治的有效方法。Tau蛋白是一种微管相关蛋白质,能够参与维持微管相关结构稳定,具有可溶性且不会聚集。在AD病理状态下,病人脑内Tau蛋白结构和功能异常。异常的Tau蛋白聚集成不可溶的神经纤维缠结,损害微管运输能力,导致病人认知功能障碍。Tau蛋白结构和功能的改变是由多种翻译后修饰过程来调控的,即将特定的化学修饰基团与Tau蛋白N-端或C-端结合,直接改变蛋白质的性质和功能。AD病人脑内Tau蛋白的磷酸化、糖基化、乙酰化及SUMO化等多种翻译后修饰异常,与Tau蛋白的降解和毒性物质的聚集密切相关。本文综述近年来的研究后发现,运动可以通过改善Tau蛋白翻译后的某些异常修饰来预防和改善AD,主要作用方式如下:(1)运动可通过抑制GSK 3β和MAPK等蛋白激酶活性来抑制Tau蛋白的过度磷酸化,可能通过上调PP2A活性来促进Tau蛋白去磷酸化;(2)运动可通过提高GLUT1和GLUT3蛋白质水平,可能通过调节OGA和OGT活性平衡,提高蛋白质O-GlcNAc糖基化水平;(3)运动可能通过AMPK/mTORC1途径抑制p300以及激活SIRT1,降低Tau蛋白乙酰化水平;同时运动还可能通过抑制HDAC6,改善Tau蛋白KXGS基序异常乙酰化程度;(4)运动可能通过调节磷酸化与SUMO化共定位点,改善Tau蛋白异常SUMO化水平。  相似文献   

2.
Multiple lines of evidence state a major role for mitochondrial dysfunction in sporadic Alzheimer’s disease (AD) etiopathogenesis. However, the molecular mechanism(s) triggered by mitochondrial deficits that lead to neurodegeneration remain elusive. Herein, we propose a new mechanism by which mitochondrial loss of potential leads to a dysfunction in autophagy/mitophagy due to the overactivation of SIRT2, a tubulin deacetylase that regulates microtubule network acetylation, and provide insights into the association between metabolism, phosphorylation, and Aβ aggregation. We observed an increase in SIRT2 levels and a decrease in the acetylation of lys40 of tubulin in AD cells containing patient mtDNA as well as in AD brains. SIRT2 loss of function either with AK1 (a specific SIRT2 inhibitor) or by SIRT2 knockout recovers microtubule stabilization and improves autophagy, favoring cell survival through the elimination of toxic Aβ oligomers. Our data provide strong evidence for a functional role of tubulin acetylation on autophagic vesicle traffic and mitochondria degradation. We propose that SIRT2 inhibition may improve microtubule assembly thus representing a valid approach as disease-modifying therapy for AD.  相似文献   

3.
Background : Mass spectrometry (MS)-based proteomic analysis of posttranslational modifications (PTMs) usually requires the pre-enrichment of modified proteins or peptides. However, recent ultra-deep whole proteome profiling generates millions of spectra in a single experiment, leaving many unassigned spectra, some of which may be derived from PTM peptides. Methods : Here we present JUMPptm, an integrative computational pipeline, to extract PTMs from unenriched whole proteome. JUMPptm combines the advantages of JUMP, MSFragger and Comet search engines, and includes de novo tags, customized database search and peptide filtering, which iteratively analyzes each PTM by a multi-stage strategy to improve sensitivity and specificity. Results : We applied JUMPptm to the deep brain proteome of Alzheimer's disease (AD), and identified 34,954 unique peptides with phosphorylation, methylation, acetylation, ubiquitination, and others. The phosphorylated peptides were validated by enriched phosphoproteome from the same sample. TMT-based quantification revealed 482 PTM peptides dysregulated at different stages during AD progression. For example, the acetylation of numerous mitochondrial proteins is significantly decreased in AD. A total of 60 PTM sites are found in the pan-PTM map of the Tau protein. Conclusion : The JUMPptm program is an effective tool for pan-PTM analysis and the resulting AD pan-PTM profile serves as a valuable resource for AD research.  相似文献   

4.
The presence of tangles composed of phosphorylated tau is one of the neuropathological hallmarks of Alzheimer''s disease (AD). Tau, a microtubule (MT)-associated protein, accumulates in AD potentially as a result of posttranslational modifications, such as hyperphosphorylation and conformational changes. However, it has not been fully understood how tau accumulation and phosphorylation are deregulated. In the present study, we identified a novel role of death-associated protein kinase 1 (DAPK1) in the regulation of the tau protein. We found that hippocampal DAPK1 expression is markedly increased in the brains of AD patients compared with age-matched normal subjects. DAPK1 overexpression increased tau protein stability and phosphorylation at multiple AD-related sites. In contrast, inhibition of DAPK1 by overexpression of a DAPK1 kinase-deficient mutant or by genetic knockout significantly decreased tau protein stability and abolished its phosphorylation in cell cultures and in mice. Mechanistically, DAPK1-enhanced tau protein stability was mediated by Ser71 phosphorylation of Pin1, a prolyl isomerase known to regulate tau protein stability, phosphorylation, and tau-related pathologies. In addition, inhibition of DAPK1 kinase activity significantly increased the assembly of MTs and accelerated nerve growth factor-mediated neurite outgrowth. Given that DAPK1 has been genetically linked to late onset AD, these results suggest that DAPK1 is a novel regulator of tau protein abundance, and that DAPK1 upregulation might contribute to tau-related pathologies in AD. Therefore, we offer that DAPK1 might be a novel therapeutic target for treating human AD and other tau-related pathologies.  相似文献   

5.
Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease (AD), and the most prevalent movement disorder. PD is characterized by dopaminergic neurodegeneration in the substantia nigra, but its etiology has yet to be established. Among several genetic variants contributing to PD pathogenesis, α-synuclein and leucine-rich repeat kinase (LRRK2) are widely associated with neuropathological phenotypes in familial and sporadic PD. α-Synuclein and LRRK2 found in Lewy bodies, a pathogenic hallmark of PD, are often posttranslationally modified. As posttranslational modifications (PTMs) are key processes in regulating the stability, localization, and function of proteins, PTMs have emerged as important modulators of α-synuclein and LRRK2 pathology. Aberrant PTMs altering phosphorylation, ubiquitination, nitration and truncation of these proteins promote PD pathogenesis, while other PTMs such as sumoylation may be protective. Although the causes of many aberrant PTMs are unknown, environmental risk factors may contribute to their aberrancy. Environmental toxicants such as rotenone and paraquat have been shown to interact with these proteins and promote their abnormal PTMs. Notably, manganese (Mn) exposure leads to a PD-like neurological disorder referred to as manganism—and induces pathogenic PTMs of α-synuclein and LRRK2. In this review, we highlight the role of PTMs of α-synuclein and LRRK2 in PD pathogenesis and discuss the impact of environmental risk factors on their aberrancy.  相似文献   

6.
Histone deacetylase 6 (HDAC6) is a tubulin deacetylase that regulates protein aggregation and turnover. Mutations in Cu/Zn superoxide dismutase (SOD1) linked to familial amyotrophic lateral sclerosis (ALS) make the mutant protein prone to aggregation. However, the role of HDAC6 in mutant SOD1 aggregation and the ALS etiology is unclear. Here we report that HDAC6 knockdown increased mutant SOD1 aggregation in cultured cells. Different from its known role in mediating the degradation of poly-ubiquitinated proteins, HDAC6 selectively interacted with mutant SOD1 via two motifs similar to the SOD1 mutant interaction region (SMIR) that we identified previously in p62/sequestosome 1. Expression of the aggregation-prone mutant SOD1 increased α-tubulin acetylation, and the acetylation-mimicking K40Q α-tubulin mutant promoted mutant SOD1 aggregation. Our results suggest that ALS-linked mutant SOD1 can modulate HDAC6 activity and increase tubulin acetylation, which, in turn, facilitates the microtubule- and retrograde transport-dependent mutant SOD1 aggregation. HDAC6 impairment might be a common feature in various subtypes of ALS.  相似文献   

7.
Intraneuronal neurofibrillary tangles composed of Tau aggregates have been widely accepted as an important pathological hallmark of Alzheimer''s disease. A current therapeutic avenue for treating Alzheimer''s disease is aimed at inhibiting Tau accumulation with small molecules such as natural flavonoids. Liquid–liquid phase separation (LLPS) of Tau can lead to its aggregation, and Tau aggregates can then be degraded by autophagy. However, it is unclear whether natural flavonoids modulate the formation of phase-separated Tau droplets or promote autophagy and Tau clearance. Here, using confocal microscopy and fluorescence recovery after photobleaching assays, we report that a natural antioxidant flavonoid compound myricetin slows LLPS of full-length human Tau, shifting the equilibrium phase boundary to a higher protein concentration. This natural flavonoid also significantly inhibits pathological phosphorylation and abnormal aggregation of Tau in neuronal cells and blocks mitochondrial damage and apoptosis induced by Tau aggregation. Importantly, using coimmunoprecipitation and Western blotting, we show that treatment of cells with myricetin stabilizes the interaction between Tau and autophagy-related protein 5 (ATG5) to promote clearance of phosphorylated Tau to indirectly limit its aggregation. Consistently, this natural flavonoid inhibits mTOR pathway, activates ATG5-dependent Tau autophagy, and almost completely suppresses Tau toxicity in neuronal cells. Collectively, these results demonstrate how LLPS and abnormal aggregation of Tau are inhibited by natural flavonoids, bridging the gap between Tau LLPS and aggregation in neuronal cells, and also establish that myricetin could act as an ATG5-dependent autophagic activator to ameliorate the pathogenesis of Alzheimer''s disease.  相似文献   

8.
Alpha‐synuclein (ASYN) is a major constituent of the typical protein aggregates observed in several neurodegenerative diseases that are collectively referred to as synucleinopathies. A causal involvement of ASYN in the initiation and progression of neurological diseases is suggested by observations indicating that single‐point (e.g., A30P, A53T) or multiplication mutations of the gene encoding for ASYN cause early onset forms of Parkinson's disease (PD). The relative regional specificity of ASYN pathology is still a riddle that cannot be simply explained by its expression pattern. Also, transgenic over‐expression of ASYN in mice does not recapitulate the typical dopaminergic neuronal death observed in PD. Thus, additional factors must contribute to ASYN‐related toxicity. For instance, synucleinopathies are usually associated with inflammation and elevated levels of oxidative stress in affected brain areas. In turn, these conditions favor oxidative modifications of ASYN. Among these modifications, nitration of tyrosine residues, formation of covalent ASYN dimers, as well as methionine sulfoxidations are prominent examples that are observed in post‐mortem PD brain sections. Oxidative modifications can affect ASYN aggregation, as well as its binding to biological membranes. This would affect neurotransmitter recycling, mitochondrial function and dynamics (fission/fusion), ASYN's degradation within a cell and, possibly, the transfer of modified ASYN to adjacent cells. Here, we propose a model on how covalent modifications of ASYN link energy stress, altered proteostasis, and oxidative stress, three major pathogenic processes involved in PD progression. Moreover, we hypothesize that ASYN may act physiologically as a catalytically regenerated scavenger of oxidants in healthy cells, thus performing an important protective role prior to the onset of disease or during aging.  相似文献   

9.
In previous studies we have demonstrated that prion protein (PrP) interacts with tubulin and disrupts microtubular cytoskeleton by inducing tubulin oligomerization. These observations may explain the molecular mechanism of toxicity of cytoplasmic PrP in transmissible spongiform encephalopathies (TSEs). Here, we check whether microtubule associated proteins (MAPs) that regulate microtubule stability, influence the PrP-induced oligomerization of tubulin. We show that tubulin preparations depleted of MAPs are more prone to oligomerization by PrP than those containing traces of MAPs. Tau protein, a major neuronal member of the MAPs family, reduces the effect of PrP. Importantly, phosphorylation of Tau abolishes its ability to affect the PrP-induced oligomerization of tubulin. We propose that the binding of Tau stabilizes tubulin in a conformation less susceptible to oligomerization by PrP. Since elevated phosphorylation of Tau leading to a loss of its function is observed in Alzheimer disease and related tauopathies, our results point at a possible molecular link between these neurodegenerative disorders and TSEs.  相似文献   

10.
Abnormal changes of neuronal Tau protein, such as phosphorylation and aggregation, are considered hallmarks of cognitive deficits in Alzheimer''s disease. Abnormal phosphorylation is thought to precede aggregation and therefore to promote aggregation, but the nature and extent of phosphorylation remain ill-defined. Tau contains ∼85 potential phosphorylation sites, which can be phosphorylated by various kinases because the unfolded structure of Tau makes them accessible. However, methodological limitations (e.g. in MS of phosphopeptides, or antibodies against phosphoepitopes) led to conflicting results regarding the extent of Tau phosphorylation in cells. Here we present results from a new approach based on native MS of intact Tau expressed in eukaryotic cells (Sf9). The extent of phosphorylation is heterogeneous, up to ∼20 phosphates per molecule distributed over 51 sites. The medium phosphorylated fraction Pm showed overall occupancies of ∼8 Pi (± 5) with a bell-shaped distribution; the highly phosphorylated fraction Ph had 14 Pi (± 6). The distribution of sites was highly asymmetric (with 71% of all P-sites in the C-terminal half of Tau). All sites were on Ser or Thr residues, but none were on Tyr. Other known posttranslational modifications were near or below our detection limit (e.g. acetylation, ubiquitination). These findings suggest that normal cellular Tau shows a remarkably high extent of phosphorylation, whereas other modifications are nearly absent. This implies that abnormal phosphorylations at certain sites may not affect the extent of phosphorylation significantly and do not represent hyperphosphorylation. By implication, the pathological aggregation of Tau is not likely a consequence of high phosphorylation.  相似文献   

11.
Post-translationally modified tau is the primary component of tau neurofibrillary tangles, a pathological hallmark of Alzheimer''s disease and other tauopathies. Post-translational modifications (PTMs) within the tau microtubule (MT)-binding domain (MBD), which encompasses two hexapeptide motifs that act as critical nucleating regions for tau aggregation, can potentially modulate tau aggregation as well as interactions with MTs and membranes. Here, we characterize the effects of a recently discovered tau PTM, lysine succinylation, on tau–tubulin interactions and compare these to the effects of two previously reported MBD modifications, lysine acetylation and tyrosine phosphorylation. As generation of site-specific PTMs in proteins is challenging, we used short synthetic peptides to quantify the effects on tubulin binding of three site-specific PTMs located within the PHF6 (paired helical filament [PHF] residues 275–280) and PHF6 (residues 306–311) hexapeptide motifs: K280 acetylation, Y310 phosphorylation, and K311 succinylation. We compared these effects to those observed for MBD PTM-mimetic point mutations K280Q, Y310E, and K311E. Finally, we evaluated the effects of these PTM-mimetic mutations on MBD membrane binding and membrane-induced fibril and oligomer formation. We found that all three PTMs perturb tau MT binding, with Y310 phosphorylation exerting the strongest effect. PTM-mimetic mutations partially recapitulated the effects of the PTMs on MT binding and also disrupted tau membrane binding and membrane-induced oligomer and fibril formation. These results imply that these PTMs, including the novel and Alzheimer''s disease–specific succinylation of tau K311, may influence both the physiological and pathological interactions of tau and thus represent targets for therapeutic intervention.  相似文献   

12.
The role of microtubule‐associated protein Tau in neurodegeneration has been extensively investigated since the discovery of Tau amyloid aggregates in the brains of patients with Alzheimer's disease (AD). The process of formation of amyloid fibrils is known as amyloidogenesis and attracts much attention as a potential target in the prevention and treatment of neurodegenerative conditions linked to protein aggregation. Cerebral deposition of amyloid aggregates of Tau is observed not only in AD but also in numerous other tauopathies and prion diseases. Amyloidogenesis of intrinsically unstructured monomers of Tau can be triggered by mutations in the Tau gene, post‐translational modifications, or interactions with polyanionic molecules and aggregation‐prone proteins/peptides. The self‐assembly of amyloid fibrils of Tau shares a number of characteristic features with amyloidogenesis of other proteins involved in neurodegenerative diseases. For example, in vitro experiments have demonstrated that the nucleation phase, which is the rate‐limiting stage of Tau amyloidogenesis, is shortened in the presence of fragmented preformed Tau fibrils acting as aggregation templates (“seeds”). Accordingly, Tau aggregates released by tauopathy‐affected neurons can spread the neurodegenerative process in the brain through a prion‐like mechanism, originally described for the pathogenic form of prion protein. Moreover, Tau has been shown to form amyloid strains—structurally diverse self‐propagating aggregates of potentially various pathological effects, resembling in this respect prion strains. Here, we review the current literature on Tau aggregation and discuss mechanisms of propagation of Tau amyloid in the light of the prion‐like paradigm.  相似文献   

13.
Together with neuronal loss, the existence of insoluble inclusions of alpha-synuclein (α-syn) in the brain is widely accepted as a hallmark of synucleinopathies including Parkinson’s disease (PD), multiple system atrophy, and dementia with Lewy body. Because the α-syn aggregates are deeply involved in the pathogenesis, there have been many attempts to demonstrate the mechanism of the aggregation and its potential causative factors including post-translational modifications (PTMs). Although no concrete conclusions have been made based on the previous study results, growing evidence suggests that modifications such as phosphorylation and ubiquitination can alter α-syn characteristics to have certain effects on the aggregation process in PD; either facilitating or inhibiting fibrillization. In the present work, we reviewed studies showing the significant impacts of PTMs on α-syn aggregation. Furthermore, the PTMs modulating α-syn aggregation-induced cell death have been discussed.   相似文献   

14.
PTMs and microtubule-associated proteins (MAPs) are known to regulate microtubule dynamicity in somatic cells. Reported literature on modulation of α-tubulin acetyl transferase (αTAT1) and histone deacetylase 6 (HDAC6) in animal models and cell lines illustrate disparity in correlating tubulin acetylation status with stability of MT. Our earlier studies showed reduced acetyl tubulin in sperm of asthenozoospermic individuals. Our studies on rat sperm showed that on inhibition of HDAC6 activity, although tubulin acetylation increased, sperm motility was reduced. Studies were therefore undertaken to investigate the influence of tubulin acetylation/deacetylation on MT dynamicity in sperm flagella using rat and human sperm. Our data on rat sperm revealed that HDAC6 specific inhibitor Tubastatin A (T) inhibited sperm motility and neutralized the depolymerizing and motility debilitating effect of Nocodazole. The effect on polymerization was further confirmed in vitro using pure MT and recHDAC6. Also polymerized axoneme was less in sperm of asthenozoosperm compared to normozoosperm. Deacetylase activity was reduced in sperm lysates and axonemes exposed to T and N+T but not in axonemes of sperm treated similarly suggesting that HDAC6 is associated with sperm axonemes or MT. Deacetylase activity was less in asthenozoosperm. Intriguingly, the expression of MDP3 physiologically known to bind to HDAC6 and inhibit its deacetylase activity remained unchanged. However, expression of acetyl α-tubulin, HDAC6 and microtubule stabilizing protein SAXO1 was less in asthenozoosperm. These observations suggest that MAPs and threshold levels of MT acetylation/deacetylation are important for MT dynamicity in sperm and may play a role in regulating sperm motility.  相似文献   

15.
Post-translational modifications of tubulin in the nervous system   总被引:1,自引:0,他引:1  
Many studies have shown that microtubules (MTs) interact with MT-associated proteins and motor proteins. These interactions are essential for the formation and maintenance of the polarized morphology of neurons and have been proposed to be regulated in part by highly diverse, unusual post-translational modifications (PTMs) of tubulin, including acetylation, tyrosination, detyrosination, Δ2 modification, polyglutamylation, polyglycylation, palmitoylation, and phosphorylation. However, the precise mechanisms of PTM generation and the properties of modified MTs have been poorly understood until recently. Recent PTM research has uncovered the enzymes mediating tubulin PTMs and provided new insights into the regulation of MT-based functions. The identification of tubulin deacetylase and discovery of its specific inhibitors have paved the way to understand the roles of acetylated MTs in kinesin-mediated axonal transport and neurodegenerative diseases such as Huntington's disease. Studies with tubulin tyrosine ligase (TTL)-null mice have shown that tyrosinated MTs are essential in normal brain development. The discovery of TTL-like genes encoding polyglutamylase has led to the finding that polyglutamylated MTs which accumulate during brain development are involved in synapse vesicle transport or neurite outgrowth through interactions with motor proteins or MT-associated proteins, respectively. Here we review current exciting topics that are expected to advance MT research in the nervous system.  相似文献   

16.
The roles of post-translational modifications (PTMs) in the onset and progression of disease have been extensively studied for decades. More specifically, various PTMs have been the focus of research in Alzheimer's disease (AD). The two most discussed hallmarks of the disease, senile plaques and tau tangles, are the result of PTMs of the amyloidβ protein precursor (AβPP) and the microtubule stabilizing protein: tau. While these modifications have been characterized indirectly by biochemical-based methods, the primary shortcoming to this research can be linked to a lack of a thorough molecular-based means of qualitative and quantitative analysis of many of these modifications within transgenic animal, and human samples. In this review, we discuss the important proteins and their associated PTMs linked to AD and the ways in which mass spectrometry has and will be utilized to analyze them. We also comment on novel ways in which molecular-based mass spectrometry methods should be employed going forward to resolve the interconnections of the PTMs involvement in various stages of AD pathology (preclinical, mild cognitive impairment, advanced-stage AD).  相似文献   

17.
Cell motility and adhesion involves dynamic microtubule (MT) acetylation/deacetylation, a process regulated by enzymes as HDAC6, a major cytoplasmic α-tubulin deacetylase. We identify G protein-coupled receptor kinase 2 (GRK2) as a key novel stimulator of HDAC6. GRK2, which levels inversely correlate with the extent of α-tubulin acetylation in epithelial cells and fibroblasts, directly associates with and phosphorylates HDAC6 to stimulate α-tubulin deacetylase activity. Remarkably, phosphorylation of GRK2 itself at S670 specifically potentiates its ability to regulate HDAC6. GRK2 and HDAC6 colocalize in the lamellipodia of migrating cells, leading to local tubulin deacetylation and enhanced motility. Consistently, cells expressing GRK2-K220R or GRK2-S670A mutants, unable to phosphorylate HDAC6, exhibit highly acetylated cortical MTs and display impaired migration and protrusive activity. Finally, we find that a balanced, GRK2/HDAC6-mediated regulation of tubulin acetylation differentially modulates the early and late stages of cellular spreading. This novel GRK2/HDAC6 functional interaction may have important implications in pathological contexts.  相似文献   

18.
Alzheimer's disease (AD) is the leading cause of dementia in the elderly. Despite decades of study, effective treatments for AD are lacking. Mitochondrial dysfunction has been closely linked to the pathogenesis of AD, but the relationship between mitochondrial pathology and neuronal damage is poorly understood. Sirtuins (SIRT, silent mating type information regulation 2 homolog in yeast) are NAD‐dependent histone deacetylases involved in aging and longevity. The objective of this study was to investigate the relationship between SIRT3 and mitochondrial function and neuronal activity in AD. SIRT3 mRNA and protein levels were significantly decreased in AD cerebral cortex, and Ac‐p53 K320 was significantly increased in AD mitochondria. SIRT3 prevented p53‐induced mitochondrial dysfunction and neuronal damage in a deacetylase activity‐dependent manner. Notably, mitochondrially targeted p53 (mito‐p53) directly reduced mitochondria DNA‐encoded ND2 and ND4 gene expression resulting in increased reactive oxygen species (ROS) and reduced mitochondrial oxygen consumption. ND2 and ND4 gene expressions were significantly decreased in patients with AD. p53‐ChIP analysis verified the presence of p53‐binding elements in the human mitochondrial genome and increased p53 occupancy of mitochondrial DNA in AD. SIRT3 overexpression restored the expression of ND2 and ND4 and improved mitochondrial oxygen consumption by repressing mito‐p53 activity. Our results indicate that SIRT3 dysfunction leads to p53‐mediated mitochondrial and neuronal damage in AD. Therapeutic modulation of SIRT3 activity may ameliorate mitochondrial pathology and neurodegeneration in AD.  相似文献   

19.
Phosphorylation of endothelial nitric oxide synthase (eNOS) is key mechanism in response to various forms of cellular stimulation. Through protein nitration by peroxynitrite, eNOS is believed to be responsible for the major abnormalities in several important neurodegenerative diseases including Alzheimer's (AD) and Parkinson's diseases (PD). Recent studies provide important in vivo evidence that hyperactivation of Cdk5 by p25 plays an essential role in the cell death of neurons in experimental models of AD and PD. This study focuses on the functional regulation of eNOS by Cdk5/p35 complex in a phosphorylation dependent manner. Our results showed that Cdk5 can phosphorylate eNOS both in vitro and in vivo. In vitro kinase assay together with the bioinformatic analysis and site direct mutagenesis revealed that Ser‐113 is the major phosphorylation site for Cdk5. Most interestingly, the nitrite production was significantly reduced in eNOS and Cdk5/p35 co‐transfected SH‐SY5Y cells when compared with co‐transfection of Cdk5/p35 and S113A. Together, our data suggest that Cdk5 can phosphorylate eNOS at the Ser‐113 site and down‐regulate eNOS‐derived NO levels. J. Cell. Biochem. 110: 112–117, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
The NAD+-dependent protein deacetylase sirtuin 1 (SIRT1), a member of the sirtuin family, may have a neuroprotective effect in multiple neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD) and Amyotrophic lateral sclerosis (ALS). Many studies have suggested that overexpression-induced or resveratrol-treated activation of SIRT1 could significantly ameliorate several neurodegenerative diseases in mouse models. However, the type of SIRT1, protein expression levels and underlying mechanisms remain unclear, especially in PD. In this study, the results demonstrated that SIRT1 knockout markedly worsened the movement function in MPTP-lesioned animal model of PD. SIRT1 expression was found to be markedly decreased not only in environmental factor PD models, neurotoxin MPP+-treated primary culture neurons and MPTP-induced mice but also in genetic factor PD models, overexpressed α-synuclein-A30PA53T SH-SY5Y stable cell line and hm2α-SYN-39 transgenic mouse strain. Importantly, the degradation of SIRT1 during MPP+ treatment was mediated by the ubiquitin-proteasome pathway. Furthermore, the results indicated that cyclin-dependent kinase 5 (Cdk5) was also involved in the decrease of SIRT1 expression, which could be efficiently blocked by the inhibition of Cdk5. In conclusion, our findings revealed that the Cdk5-dependent ubiquitin-proteasome pathway mediated degradation of SIRT1 plays a vital role in the progression of PD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号