首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The International Commission on Radiological Protection (ICRP) has published new Recommendations in ICRP Publication 60. These 1990 Recommendations provide a System of Radiological Protection that takes account of the most recent information on the effects on health of exposure to ionising radiation and trends in the setting of safety standards. Within the European Community the Recommendations fo the ICRP are implemented through a Euratom Directive which is binding on member states, a draft of which has been accepted by the Article 31 Group and must eventually be ratified by the Council of Ministers. It is expected that the new directive will broadly endorse the principles of protection given in the 1990 Recommendations together with the dose limits for both workers and members of the public. There are likely to be some modifications to the 1990 Recommendations that are mainly related to their practical application. As it will be some time before the directive is incorporated into national regulations, a number of member states have taken independent initiatives. The development of dose constraints for occupational, medical and public exposure is being seen by national organisations in many countries as a significant new approach to improving standards of radiation protection.  相似文献   

2.
The most recent Recommendations (Publication 103) issued by the International Commission for Radiological Protection (ICRP) are based on the data that have been published since 1990 up to now. The basic task of the ICRP Committee 1 was to formulate the key implications of studies on radiobiological effects for the purposes of radiological protection. Presented in the paper are the new achievements in the field of biology, radiobiology and radiation epidemiology which were taken into account by the ICRP in the process of Publication 103 preparation. The Recommendations provide present-day values of weighting factors for radiation exposure and tissue weighting factors, as well as radiation detriment and radiogenic risk factors for cancer and genetic diseases. Also considered are tissue reactions to radiation exposure, consequences of in utero exposure and the risks of developing non-cancer diseases for exposed individuals. It should be noted that the key inferences and recommendations are to a considerable degree related to biological effects accounted for by acute and chronic exposure to ionizing radiation in the range of small doses (up to 100 mSv).  相似文献   

3.
The present recommendations of the ICRP (International Commission on Radiological Protection) are almost entirely based on 'stochastic effects' of ionizing radiation, i.e. cancer induction and heritable effects. In a recent report the compatibility of present recommendations with non-stochastic effects has been considered. The present paper is a summary of these findings.  相似文献   

4.
The National Council on Radiation Protection and Measurements (NCRP) in the USA and the International Commission on Radiological Protection (ICRP), worldwide, were formed about 1928 and have since made recommendations on appropriate levels of protection from ionizing radiation for workers and for the public. These recommendations and much of the guidance provided by these organizations have usually been adopted by regulatory bodies around the world. In the case of the NCRP, the levels have fallen from 0.1 roentgen per day in 1934 to the current 5 rem per year (a factor of about 5). The present levels recommended by both the ICRP and the NCRP correspond to reasonable levels of risk where the risks of harm from ionizing radiation are compared with the hazards of other, commonly regarded, as safe, industries. Some considerations for the future in radiation protection include trends in exposure levels (generally downward for the average exposure to workers) and improvements in risk estimation; questions of lifetime limits, de minimis levels, and partial body exposures; plus problems of high LET radiations, acceptability of risk, synergisms, and risk systems for protection.  相似文献   

5.
The plutonium production facility known as the Mayak Production Association was put into operation in June 1948. A high incidence of cancer in the Mayak workers has been related to the level of exposure to plutonium, but uncertainties in tissue doses have hampered development of dose-risk relationships. As part of an effort to improve dose estimates for these workers, the systemic biokinetic model for plutonium currently recommended by the International Commission on Radiological Protection (ICRP) has been modified to reflect recently developed data and facilitate interpretation of case-specific information. This paper describes the proposed model and discusses its implications for dose reconstruction for the Mayak workers.  相似文献   

6.
Radiation and Environmental Biophysics - The system of protection established by the International Commission on Radiological Protection (ICRP) provides a robust framework for ionizing radiation...  相似文献   

7.
Metabolic model and dosimetric data for copper   总被引:1,自引:0,他引:1  
A metabolic model for copper is derived and presented in the context of the International Commission on Radiological Protection (ICRP) dosimetry models for the lungs and gastrointestinal tract. Research sponsored by the Energy Research and Development Administration under contract with Union Carbide Corporation.  相似文献   

8.
Effective dose (E) has been developed by the International Commission on Radiological Protection (ICRP) as a dose quantity with a link to risks of health detriment, mainly cancer. It is based on reference phantoms representing average individuals, but this is often forgotten in its application to medical exposures, for which its use sometimes goes beyond the intended purpose. There has been much debate about issues involved in the use of E in medicine and ICRP is preparing a publication with more information on this application. This article aims to describe the development of E and explain how it should be used in medicine. It discusses some of the issues that arise when E is applied to medical exposures and provides information on how its use might evolve in the future. The article concludes with responses to some frequently asked questions about uses of E that are in line with the forthcoming ICRP publication. The main use of E in medicine is in meaningful comparison of doses from different types of procedure not possible with measurable dose quantities. However, it can be used, with appropriate care, as a measure of possible cancer risks. When considering E to individual patients, it is important to note that the dose received will differ from that assessed for reference phantoms, and the risk per Sv is likely to be greater on average in children and less in older adults. Newer techniques allow the calculation of patient-specific E which should be distinguished from the reference quantity.  相似文献   

9.
Ankylosing spondylitis (AS) is a chronic inflammatory rheumatic disease which reduces the quality of life and leads to disability in approximately one-third of the patients. The spectrum of therapeutic modalities is limited. The renaissance of the use of (224)Ra-radium chloride for AS treatment, however, gives rise to concern which should result in the reconsideration of (224)Ra dosimetry and in the discussion of the risks associated with this treatment. The present study introduces new dosimetric calculations for alpha and beta/gamma rays performed according to the model proposed by the International Commission on Radiological Protection (ICRP). After a treatment schedule of 10 intravenous injections, each with 1 MBq of (224)Ra, the absorbed doses were calculated to be highest on the bone surface of the patient (4.4 Gy) with a resulting effective dose of 2.5 Sv.  相似文献   

10.
PurposeThe purpose of this study was to develop and validate a Monte Carlo (MC) simulation tool for patient dose assessment for a 320 detector-row CT scanner, based on the recommendations of International Commission on Radiological Protection (ICRP). Additionally, the simulation was applied on four clinical acquisition protocols, with and without automatic tube current modulation (TCM).MethodsThe MC simulation was based on EGS4 code and was developed specifically for a 320 detector-row cone-beam CT scanner. The ICRP adult reference phantoms were used as patient models. Dose measurements were performed free-in-air and also in four CTDI phantoms: 150 mm and 350 mm long CT head and CT body phantoms. The MC program was validated by comparing simulations results with these actual measurements acquired under the same conditions. The measurements agreed with the simulations across all conditions within 5%. Patient dose assessment was performed for four clinical axial acquisitions using the ICRP adult reference phantoms, one of them using TCM.ResultsThe results were nearly always lower than those obtained from other dose calculator tools or published in other studies, which were obtained using mathematical phantoms in different CT systems. For the protocol with TCM organ doses were reduced by between 28 and 36%, compared to the results obtained using a fixed mA value.ConclusionsThe developed simulation program provides a useful tool for assessing doses in a 320 detector-row cone-beam CT scanner using ICRP adult reference computational phantoms and is ready to be applied to more complex protocols.  相似文献   

11.
Radiation and Environmental Biophysics - Current radiological emergency response recommendations have been provided by the International Commission on Radiological Protection and adopted by the...  相似文献   

12.
Laurier  D.  Rühm  W.  Paquet  F.  Applegate  K.  Cool  D.  Clement  C. 《Radiation and environmental biophysics》2021,60(4):519-530

This document presents the ICRP's updated vision on “Areas of Research to Support the System of Radiological Protection”, which have been previously published in 2017. It aims to complement the research priorities promoted by other relevant international organisations, with the specificity of placing them in the perspective of the evolution of the System of Radiological Protection. This document contributes to the process launched by ICRP to review and revise the System of Radiological Protection that will update the 2007 General Recommendations in ICRP Publication 103.

  相似文献   

13.
A model for the derivation of dose rates per unit radon concentration in plants was developed in line with the activities of a Task Group of the International Commission on Radiological Protection (ICRP), aimed at developing more realistic dosimetry for non-human biota. The model considers interception of the unattached and attached fractions of the airborne radon daughters by plant stomata, diffusion of radon gas through stomata, permeation through the plant’s epidermis and translocation of deposited activity to plant interior. The endpoint of the model is the derivation of dose conversion coefficients relative to radon gas concentration at ground level. The model predicts that the main contributor to dose is deposition of 214Po α-activity on the plant surface and that diffusion of radon daughters through the stomata is of relatively minor importance; hence, daily variations have a small effect on total dose.  相似文献   

14.
A general method for calculating doses absorbed from isotopes released in nuclear accidents is presented. As an example, this method was used to calculate doses for inhabitants of Southern Poland due to inhalation of 131I released due to the Fukushima nuclear plant accident. 131I activity measurements in the air of that region provided the basis for the study. The proposed model is based on a complex biokinetic model for iodine merging the Leggett model developed in 2010 with the human respiratory tract and gastrointestinal tract models recommended by the International Commission on Radiological Protection (ICRP). This model is described here, and it is demonstrated that resulting dose estimates are consistent with those obtained using the ICRP methodology. Using the developed model, total doses were calculated for six age groups of both genders, for gaseous and aerosol fractions alike. The committed effective dose, H 50, for an adult man reached 16 nSv, which is lower than 0.001% of the background dose. The dose for the thyroid of an adult reached 0.33 μSv, which corresponds to circa 0.0007% of the dose to the population of Southern Poland after the Chernobyl nuclear plant accident.  相似文献   

15.
The radiation detriment in ICRP 103 is defined as the product of the organ-specific risk coefficient and the damage that may be associated with a cancer type or hereditary effect. This is used to indicate a weighted risk according to the radiation sensitivity of different organs and the severity of damage that may possibly arise. While the risk refers to radiation exposure parameters, the extent of damage is independent of radiation. The parameters that are not affected by radiation are lethality, impairment of quality of life, and reduced life expectancy, which are considered as quantities associated with the severity of disease or damage. The damage and thus the detriment appear to be mostly affected by lethality, which is the quotient of the age-standardized mortality rate to the incidence rate. The analysis of the detriment presented in this paper focuses on the influence of the lethality on the detriment from 1980 to 2012 in the USA and Germany. While the lethality in this period covering more than three decades has decreased approximately linearly by 30% (both USA and Germany), within the same period the detriment declined only by 13% in the USA and by 15% in Germany. If only based on these two countries, an update on the detriment parameters with reference to 2007, when ICRP 103 was released, would result in a reduced weighted risk, i.e. the radiation detriment would be reduced by 10 to 15% from originally 5.7% per Sv for the whole population to roughly 5% per Sv.  相似文献   

16.
Neutron dose coefficients for standard irradiation geometries have been reported in International Commission on Radiological Protection (ICRP) Publication 116 for the ICRP Publication 110 adult reference phantoms. In the present work, organ and effective dose coefficients have been calculated for a receptor in both upright and articulated (bent) postures representing more realistic working postures exposed to a mono-energetic neutron radiation field. This work builds upon prior work by Dewji and co-workers comparing upright and bent postures for exposure to mono-energetic photon fields. Simulations were conducted using the Oak Ridge National Laboratory’s articulated stylized adult phantom, “Phantom wIth Moving Arms and Legs” (PIMAL) software package, and the Monte Carlo N-Particle (MCNP) version 6.1.1 radiation transport code. Organ doses were compared for the upright and bent (45° and 90°) phantom postures for neutron energies ranging from 1 × 10??9 to 20 MeV for the ICRP Publication 116 external exposure geometries—antero-posterior (AP), postero-anterior (PA), and left and right lateral (LLAT, RLAT). Using both male and female phantoms, effective dose coefficients were computed using ICRP Publication 103 methodology. The resulting coefficients for articulated phantoms were compared to those of the upright phantom. Computed organ and effective dose coefficients are discussed as a function of neutron energy, phantom posture, and source irradiation geometry. For example, it is shown here that for the AP and PA irradiation geometries, the differences in the organ coefficients between the upright and bent posture become more pronounced with increasing bending angle. In the AP geometry, the brain dose coefficients are expectedly higher in the bent postures than in the upright posture, while all other organs have lower dose coefficients, with the thyroid showing the greatest difference. Overall, the effective dose estimated for the upright phantom is more conservative than that for the articulated phantom, which may have ramifications in the estimation or reconstruction of radiation doses.  相似文献   

17.
Epidemiological studies of the relationship between risk and internal exposure to plutonium are clearly reliant on the dose estimates used. The International Commission on Radiological Protection (ICRP) is currently reviewing the latest scientific information available on biokinetic models and dosimetry, and it is likely that a number of changes to the existing models will be recommended. The effect of certain changes, particularly to the ICRP model of the respiratory tract, has been investigated for inhaled forms of 239Pu and uncertainties have also been assessed. Notable effects of possible changes to respiratory tract model assumptions are (1) a reduction in the absorbed dose to target cells in the airways, if changes under consideration are made to the slow clearing fraction and (2) a doubling of absorbed dose to the alveolar region for insoluble forms, if evidence of longer retention times is taken into account. An important factor influencing doses for moderately soluble forms of 239Pu is the extent of binding of dissolved plutonium to lung tissues and assumptions regarding the extent of binding in the airways. Uncertainty analyses have been performed with prior distributions chosen for application in epidemiological studies. The resulting distributions for dose per unit intake were lognormal with geometric standard deviations of 2.3 and 2.6 for nitrates and oxides, respectively. The wide ranges were due largely to consideration of results for a range of experimental data for the solubility of different forms of nitrate and oxides. The medians of these distributions were a factor of three times higher than calculated using current default ICRP parameter values. For nitrates, this was due to the assumption of a bound fraction, and for oxides due mainly to the assumption of slower alveolar clearance. This study highlights areas where more research is needed to reduce biokinetic uncertainties, including more accurate determination of particle transport rates and long-term dissolution for plutonium compounds, a re-evaluation of long-term binding of dissolved plutonium, and further consideration of modeling for plutonium absorbed to blood from the lungs.  相似文献   

18.
Efforts at protecting people against the harmful effects of radiation had their beginnings in the early 1900s with the intent of protecting individuals in medicine and associated professions. Such efforts remain vital for all of us more than 100 years later as part of our 'learning to live with ionizing radiation.' The field of radiation protection has evolved slowly over time with advances in knowledge on hereditary (i.e., genetic) and carcinogenic effects of radiation continually improving our ability to make informed judgments about how best to balance risks against benefits of radiation exposure. This paper examines just one aspect of these efforts, namely, how advances in knowledge of genetic effects of radiation have impacted on the recommendations of the International Commission on Radiological Protection (ICRP). The focus is on the period from the mid-1950s (when genetic risk estimates were first made) to 2007. This article offers a detailed historical analysis and personal perspective, and concludes with a synopsis of key developments in radiation protection.  相似文献   

19.
Uranium is a naturally occurring primordial radioactive element. Small amounts found in air, water, and food are regularly consumed and inhaled by humans. Even the military, medical, and industrial use of depleted uranium can affect humans. There is an appreciable retention of incorporated uranium in skeleton, kidneys, and liver, and a review of respective effective dose coefficients has been given by the International Commission on Radiological Protection (ICRP) in its "Publication 69"; however, data regarding retention in organs or tissues and rates of urinary and fecal excretion for different age groups are incomplete. Therefore, the present study provides retention data that have been calculated for uranium in all compartments and for urinary and fecal excretion, following acute and chronic injection and ingestion for six age groups. The calculations are based on the current ICRP biokinetic model for uranium, and the data can be plotted by using any mathematical software to obtain the retention data at any time after incorporation or to calculate the internal average organ dose induced by uranium provided that specific absorbed fractions are available. The dynamic relationship of the retention in plasma and blood after intravenously and orally administered uranium can easily be derived from the database for injection and ingestion. The calculated contents of uranium in organs or tissues (using the uranium concentration in foodstuffs published by UNSCEAR for Europeans) are compared with autopsy data available in the literature. According to this model, the whole body of a 75-year-old man contains 7 microg uranium, of which 76% is in the skeleton, 1% in the kidneys, and 2.1% in the liver.  相似文献   

20.
The main contribution of radiation dose to the human lungs from natural exposure originates from short-lived radon progeny. In the present work, the inhalation doses from indoor short-lived radon progeny, i.e., 218Po, 214Pb, 214Bi, and 214Po, to different age groups of members of the public were calculated. In the calculations, the age-dependent systemic biokinetic models of polonium, bismuth, and lead published by the International Commission on Radiological Protection (ICRP) were adopted. In addition, the ICRP human respiratory tract and gastrointestinal tract models were applied to determine the deposition fractions in different regions of the lungs during inhalation and exhalation, and the absorption fractions of radon progeny in the alimentary tract. Based on the calculated contribution of each progeny to equivalent dose and effective dose, the dose conversion factor was estimated, taking into account the unattached fraction of aerosols, attached aerosols in the nucleation, accumulation and coarse modes, and the potential alpha energy concentration fraction in indoor air. It turned out that for each progeny, the equivalent doses to extrathoracic airways and the lungs are greater than those to other organs. The contribution of 214Po to effective dose is much smaller compared to that of the other short-lived radon progeny and can thus be neglected in the dose assessment. In fact, 90 % of the effective dose from short-lived radon progeny arises from 214Pb and 214Bi, while the rest is from 218Po. The dose conversion factors obtained in the present study are 17 and 18 mSv per working level month (WLM) for adult female and male, respectively. This compares to values ranging from 6 to 20 mSv WLM?1 calculated by other investigators. The dose coefficients of each radon progeny calculated in the present study can be used to estimate the radiation doses for the population, especially for small children and women, in specific regions of the world exposed to radon progeny by measuring their concentrations, aerosol sizes, and unattached fractions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号