首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dual PI3Kγ/δ inhibitors have recently been shown to be suitable targets for inflammatory and respiratory diseases. In a recent study we described the discovery of selective PI3Kγ inhibitors based on a triazolopyridine scaffold. Herein, we describe the elaboration of this structural class into dual PI3Kγ/δ inhibitors with excellent selectivity over the other PI3K isoforms and the general kinome. Structural optimization led to the identification of two derivatives which showed significant efficacy in an acute model of lung inflammation.  相似文献   

2.
The central role of phosphatidylinositol 3-kinase (PI3K, p110α) signaling in allowing cancer cells to bypass normal growth-limiting controls has led to the development of PI3K(p110α) inhibitors. A challenge in targeting PI3K(p110α) relates to the diverse actions of the PI3K pathway in numerous cell types. Recent findings in mice deficient in PI3K(p110α) activity in the heart, demonstrate the critical role of this pathway in protecting the heart against pathological insults. Mice deficient in PI3K(p110α) displayed accelerated heart failure in response to dilated or hypertrophic cardiomyopathy. These results help explain the association of cardiomyopathy in cancer patients given tyrosine kinase inhibitors and raise concerns for the use of PI3K(p110α) inhibitors in cancer patients with cardiovascular risk factors. Interestingly, an inhibitor of the mammalian target of rapamycin (a downstream effector of PI3K), did not have adverse effects on the heart. A more complete understanding of the complex arms and interactions of the PI3K pathway will hopefully lead to the development of anti-cancer agents without cardiac complications.  相似文献   

3.
In in vitro studies class-I PI3Ks (phosphoinositide 3-kinases), class-II PI3Ks and mTOR (mammalian target of rapamycin) have all been described as having roles in the regulation of glucose metabolism. The relative role each plays in the normal signalling processes regulating glucose metabolism in vivo is less clear. Knockout and knockin mouse models have provided some evidence that the class-I PI3K isoforms p110α, p110β, and to a lesser extent p110γ, are necessary for processes regulating glucose metabolism and appetite. However, in these models the PI3K activity is chronically reduced. Therefore we analysed the effects of acutely inhibiting PI3K isoforms alone, or PI3K and mTOR, on glucose metabolism and food intake. In the present study impairments in glucose tolerance, insulin tolerance and increased hepatic glucose output were observed in mice treated with the pan-PI3K/mTOR inhibitors PI-103 and NVP-BEZ235. The finding that ZSTK474 has similar effects indicates that these effects are due to inhibition of PI3K rather than mTOR. The p110α-selective inhibitors PIK75 and A66 also induced these phenotypes, but inhibitors of p110β, p110δ or p110γ induced only minor effects. These drugs caused no significant effects on BMR (basal metabolic rate), O2 consumption or water intake, but BEZ235, PI-103 and PIK75 did cause a small reduction in food consumption. Surprisingly, pan-PI3K inhibitors or p110α inhibitors caused reductions in animal movement, although the cause of this is not clear. Taken together these studies provide pharmacological evidence to support a pre-eminent role for the p110α isoform of PI3K in pathways acutely regulating glucose metabolism.  相似文献   

4.
Targeting the phosphatidylinositol-3-kinase (PI3K) is a promising approach in cancer therapy. In particular, PI3K blockade leads to the inhibition of AKT, a major downstream effector responsible for the oncogenic activity of PI3K. However, we report here that small molecule inhibitors of PI3K only transiently block AKT signaling. Indeed, treatment of cancer cells with PI3K inhibitors results in a rapid inhibition of AKT phosphorylation and signaling which is followed by the reactivation of AKT signaling after 48 h as observed by Western blot. Reactivation of AKT signaling occurs despite effective inhibition of PI3K activity by PI3K inhibitors. In addition, wortmannin, a broad range PI3K inhibitor, did not block AKT reactivation suggesting that AKT signals independently of PI3K. In a therapeutical perspective, combining AKT and PI3K inhibitors exhibit stronger anti-proliferative and pro-apoptotic effects compared to AKT or PI3K inhibitors alone. Similarly, in a tumor xenograft mouse model, concomitant PI3K and AKT blockade results in stronger anti-cancer activity compared with either blockade alone. This study shows that PI3K inhibitors only transiently inhibit AKT which limits their antitumor activities. It also provides the proof of concept to combine PI3K inhibitors with AKT inhibitors in cancer therapy.  相似文献   

5.
ABSTRACT: BACKGROUND: Using novel small-molecular inhibitors, we explored the feasibility of the class I PI3K/Akt/mTORC1 signaling pathway as a therapeutic target in canine oncology either by using pathway inhibitors alone, in combination or combined with conventional chemotherapeutic drugs in vitro. RESULTS: We demonstrate that growth and survival of the cell lines tested are predominantly dependent on class I PI3K/Akt signaling rather than mTORC1 signaling. In addition, the newly developed inhibitors ZSTK474 and KP372-1 which selectively target pan-class I PI3K and Akt, respectively, and Rapamycin which has been well-established as highly specific mTOR inhibitor, decrease viability of canine cancer cell lines. All inhibitors demonstrated inhibition of phosphorylation of pathway members. Annexin V staining demonstrated that KP372-1 is a potent inducer of apoptosis whereas ZSTK474 and Rapamycin are weaker inducers of apoptosis. Simultaneous inhibition of class I PI3K and mTORC1 by ZSTK474 combined with Rapamycin additively or synergistically reduced cell viability whereas responses to the PI3K pathway inhibitors in combination with conventional drug Doxorubicin were cell linedependent. CONCLUSION: This study highlighted the importance of class I PI3K/Akt axis signaling in canine tumour cells and identifies it as a promising therapeutic target.  相似文献   

6.
Although members of the class I phosphoinositide 3-kinases (PI3Ks) have been implicated in neutrophil inflammatory responses, the contribution of the individual PI3K isoforms in neutrophil activation has not been tractable with the non-selective inhibitors, LY294002 and wortmannin. We have developed a novel series of PI3K inhibitors that is selective for PI3K delta, an isoform expressed predominantly in hematopoietic cells. In addition to being selective between members of class I PI3Ks, representatives of these inhibitors such as IC980033 and IC87114 did not inhibit any protein kinases tested. Utilizing these inhibitors we report here a novel role for PI3K delta in neutrophil activation. Inhibition of PI3K delta with IC980033 and IC87114 blocked both fMLP- and TNF1 alpha-induced neutrophil superoxide generation and elastase exocytosis. The PI3K delta inhibitor IC87114 also blocked TNF1 alpha-stimulated elastase exocytosis from neutrophils in a mouse model of inflammation. To our knowledge, this is the first in vivo efficacy demonstration of a PI3K delta inhibitor in an animal model. Inhibition of PI3K delta, however, had no effect on in vitro neutrophil bactericidal activity and Fc gamma R-stimulated superoxide generation. Thus, PI3K delta plays an essential role in certain signaling pathways of neutrophil activation and appears to be an attractive target for the development of an anti-inflammatory therapeutic.  相似文献   

7.
B7-H4 plays an important role in tumor immune evasion. In previous studies we have found that B7-H4 can translocate to the nucleus, and the exposure to PI3K inhibitor Ly294002 affects B7-H4 subcellular distribution. In this study we report the role of PI3K/Akt pathway in the B7-H4 subcellular distribution and the effect of PI3K/Akt inhibitors on B7-H4-mediated immunoresistance. The involvement of PI3K/Akt pathway in B7-H4 subcellular distribution was evident in experiments with wortmannin, while MDM2 inhibitor nutlin-3 and the mTOR inhibitor rapamycin were used to dissect the signaling downstream of Akt. Wortmannin and rapamycin demonstrated similar effects on B7-H4 subcellular distribution. Exposure to any of these inhibitors decreased levels of membrane B7-H4 while at the same time inducing its nuclear accumulation, while exposure to nutlin-3 had no effect on B7-H4 subcellular distribution. In the T cell proliferation assay, both wortmannin and rapamycin effectively inhibited B7-H4 WT/293 cells-mediated T cell proliferation while exerting no effect on Mock/293 cells. PI3K/Akt/mTOR plays a role in B7-H4 subcellular distribution, while MDM2 does not take part in it. Moreover, we show that wortmannin and rapamycin inhibit B7-H4-mediated tumor immunoresistance through regulating B7-H4 subcellular distribution. Taken together, these results suggest that PI3K/Akt/mTOR inhibitors might be used for adjuvant therapy aimed at inhibition of immune evasion.  相似文献   

8.
Phosphatidylinositol 3-kinase (PI3K), one member of lipid kinase family, has been demonstrated to play a key role in regulating cell proliferation, adhesion, survival, and motility. Recent studies indicate that PI3K related signaling pathway is one of the most commonly activated pathways in human cancers. Accordingly, pharmacological inhibition of key nodes in this signaling cascade has been a focus in developmental therapeutics. To date, Inhibitors targeting PI3K or nodes in this pathway, AKT and mTOR, are best studied and have reached clinical trials. In this review, we will focus on recent progress on understanding of PI3Ks signaling pathway and the development of PI3K inhibitors.  相似文献   

9.
Phosphatidylinositol 3-kinase (PI3K) is a lipid kinase and a promising therapeutic target for cancer. Using structure-based drug design (SBDD), we have identified novel PI3K inhibitors with a dihydropyrrolopyrimidine skeleton. Metabolic stability of the first lead series was drastically improved by replacing phenol with aminopyrimidine moiety. CH5132799, a novel class I PI3K inhibitor, exhibited a strong inhibitory activity especially against PI3Kα (IC50 = 0.014 μM). In human tumor cell lines with PI3K pathway activation, CH5132799 showed potent antiproliferative activity. CH5132799 is orally available and showed significant antitumor activity in PI3K pathway-activated human cancer xenograft models in mice.  相似文献   

10.
11.
In glucose-induced insulin secretion from pancreatic β-cells, a population of insulin granules fuses with the plasma membrane without the typical docking process (newcomer granule fusions), however, its mechanism is unclear. In this study, we investigated the PI3K signaling pathways involved in the upregulation of newcomer granule fusions. Acute treatment with the class IA-selective PI3K inhibitors, PIK-75 and PI-103, enhanced the glucose-induced insulin secretion. Total internal reflection fluorescent microscopy revealed that the PI3K inhibitors increased the fusion events from newcomer granules. We developed a new system for transfection into pancreatic islets and demonstrated the usefulness of this system in order for evaluating the effect of transfected genes on the glucose-induced secretion in primary cultured pancreatic islets. Using this transfection system together with a series of constitutive active mutants, we showed that the PI3K-3-phosphoinositide dependent kinase-1 (PDK1)-Akt pathway mediated the potentiation of insulin secretion. The Akt inhibitor also enhanced the glucose-induced insulin secretion in parallel with the upregulation of newcomer granule fusions, probably via increased motility of intracellular insulin granules. These data suggest that the PI3K-PDK1-Akt pathway plays a significant role in newcomer granule fusions, probably through an alteration of the dynamics of the intracellular insulin granules.  相似文献   

12.
Prostatic branching morphogenesis is an intricate event requiring precise temporal and spatial integration of numerous hormonal and growth factor-regulated inputs, yet relatively little is known about the downstream signaling pathways that orchestrate this process. In this study, we use a novel mesenchyme-free embryonic prostate culture system, newly available mTOR inhibitors and a conditional PTEN loss-of-function model to investigate the role of the interconnected PI3K and mTOR signaling pathways in prostatic organogenesis. We demonstrate that PI3K levels and PI3K/mTOR activity are robustly induced by androgen during murine prostatic development and that PI3K/mTOR signaling is necessary for prostatic epithelial bud invasion of surrounding mesenchyme. To elucidate the cellular mechanism by which PI3K/mTOR signaling regulates prostatic branching, we show that PI3K/mTOR inhibition does not significantly alter epithelial proliferation or apoptosis, but rather decreases the efficiency and speed with which the developing prostatic epithelial cells migrate. Using mTOR kinase inhibitors to tease out the independent effects of mTOR signaling downstream of PI3K, we find that simultaneous inhibition of mTORC1 and mTORC2 activity attenuates prostatic branching and is sufficient to phenocopy combined PI3K/mTOR inhibition. Surprisingly, however, mTORC1 inhibition alone has the reverse effect, increasing the number and length of prostatic branches. Finally, simultaneous activation of PI3K and downstream mTORC1/C2 via epithelial PTEN loss-of-function also results in decreased budding reversible by mTORC1 inhibition, suggesting that the effect of mTORC1 on branching is not primarily mediated by negative feedback on PI3K/mTORC2 signaling. Taken together, our data point to an important role for PI3K/mTOR signaling in prostatic epithelial invasion and migration and implicates the balance of PI3K and downstream mTORC1/C2 activity as a critical regulator of prostatic epithelial morphogenesis.  相似文献   

13.
PI3Kδ mediates key immune cell signaling pathways and is a target of interest for multiple indications in immunology and oncology. Here we report a structure-based scaffold-hopping strategy for the design of chemically diverse PI3Kδ inhibitors. Using this strategy, we identified several scaffolds that can be combined to generate new PI3Kδ inhibitors with high potency and isoform selectivity. In particular, an oxindole-based scaffold was found to impart exquisite selectivity when combined with several hinge binding motifs.  相似文献   

14.
Emerging data on cancer suggesting that target-based therapy is promising strategy in cancer treatment. PI3K-AKT pathway is extensively studied in many cancers; several inhibitors target this pathway in different levels. Recent finding on this pathway uncovered the therapeutic applications of PI3K-specific inhibitors; PI3K, AKT, and mTORC broad spectrum inhibitors. Noticeably, class I PI3K isoforms, p110γ and p110δ catalytic subunits have rational therapeutic application than other isoforms. Therefore, three classes of inhibitors: isoform-specific, dual-specific and broad spectrum were selected for molecular docking and dynamics. First, p110δ structure was modelled; active site was analyzed. Then, molecular docking of each class of inhibitors were studied; the docked complexes were further used in 1.2?ns molecular dynamics simulation to report the potency of each class of inhibitor. Remarkably, both the studies retained the similar kind of protein ligand interactions. GDC-0941, XL-147 (broad spectrum); TG100-115 (dual-specific); and AS-252424, PIK-294 (isoform-specific) were found to be potential inhibitors of p110γ and p110δ, respectively. In addition to that pharmacokinetic properties are within recommended ranges. Finally, molecular phylogeny revealed that p110γ and p110δ are evolutionarily divergent; they probably need separate strategies for drug development.  相似文献   

15.
The PI3K (phosphoinositide 3-kinase) pathway regulates cell proliferation, survival and migration and is consequently of great interest for targeted cancer therapy. Using a panel of small-molecule PI3K isoform-selective inhibitors in a diverse set of breast cancer cell lines, we have demonstrated that the biochemical and biological responses were highly variable and dependent on the genetic alterations present. p110alpha inhibitors were generally effective in inhibiting the phosphorylation of PKB (protein kinase B)/Akt and S6, two downstream components of PI3K signalling, in most cell lines examined. In contrast, p110beta-selective inhibitors only reduced PKB/Akt phosphorylation in PTEN (phosphatase and tensin homologue deleted on chromosome 10) mutant cell lines, and was associated with a lesser decrease in S6 phosphorylation. PI3K inhibitors reduced cell viability by causing cell-cycle arrest in the G(1) phase, with multi-targeted inhibitors causing the most potent effects. Cells expressing mutant Ras were resistant to the cell-cycle effects of PI3K inhibition, which could be reversed using inhibitors of Ras signalling pathways. Taken together, our data indicate that these compounds, alone or in suitable combinations, may be useful as breast cancer therapeutics, when used in appropriate genetic contexts.  相似文献   

16.
17.
The PI3K inhibitor arsenal: choose your weapon!   总被引:1,自引:0,他引:1  
Owing to its widespread activation in inflammation and cancer, a growing appreciation of the therapeutic potential of inhibitors of the phosphoinositide 3-kinase (PI3K) pathway has stimulated intense interest in compounds with suitable pharmacological profiles. These are primarily directed toward PI3K itself. However, as class I PI3Ks are also essential for a range of normal physiological processes, broad spectrum PI3K inhibition could be poorly tolerated. In recent years, patents describing a new generation of PI3K inhibitors have started to appear, with a particular focus on the development of compounds with enhanced isoform selectivity for use as anti-cancer and anti-inflammatory therapies. However, challenges remain for the efforts to pharmacologically target this enzyme family in a successful manner.  相似文献   

18.
Glioblastoma multiforme (GBM) is the most common primary brain tumor and among the most difficult to treat malignancies per se. In almost 90% of all GBM alterations in the PI3K/Akt/mTOR have been found, making this survival cascade a promising therapeutic target, particular for combination therapy that combines an apoptosis sensitizer, such as a pharmacological inhibitor of PI3K, with an apoptosis inducer, such as radio- or chemotherapy. However, while in vitro data focusing mainly on established cell lines has appeared rather promising, this has not translated well to a clinical setting. In this study, we analyze the effects of the dual kinase inhibitor PI-103, which blocks PI3K and mTOR activity, on three matched pairs of GBM stem cells/differentiated cells. While blocking PI3K-mediated signaling has a profound effect on cellular proliferation, in contrast to data presented on two GBM cell lines (A172 and U87) PI-103 actually counteracts the effect of chemotherapy. While we found no indications for a potential role of the PI3K signaling cascade in differentiation, we saw a clear and strong contribution to cellular motility and, by extension, invasion. While blocking PI3K-mediated signaling concurrently with application of chemotherapy does not appear to be a valid treatment option, pharmacological inhibitors, such as PI-103, nevertheless have an important place in future therapeutic approaches.  相似文献   

19.
磷脂酰肌醇3-激酶(phosphatidylinosito1 3-kinase,PI3K)是体内很多生理过程中起关键作用的信号分子,PI3K介导的信号转导通路调节细胞的增生、分化、凋亡等活动。以往研究较多的是PI3K与肿瘤发生发展的关系,最近很多研究发现PI3K介导的信号转导通路对心脏具有重要的调节功能。本文就近年来关于PI3K的结构和功能以及PI3K对心脏的调节的研究作一综述。  相似文献   

20.
Human rhinoviruses (HRV) are a major cause of exacerbations of airways disease. Aspects of cell signalling responses to HRV infection remain unclear, particularly with regard to signalling via PI3K, and the PI3K-dependent pathway, autophagy. We investigated the roles of PI3K and autophagy in the responses of epithelial cells to major and minor group HRV infection. The PI3K inhibitor 3-MA, commonly used to inhibit autophagy, markedly reduced HRV-induced cytokine induction. Further investigation of potential targets of 3-MA and comparison of results using this inhibitor to a panel of general and class I-selective PI3K inhibitors showed that several PI3Ks cooperatively regulate responses to HRV. Targeting by siRNA of the autophagy proteins Beclin-1, Atg7, LC3, alone or in combination, or targeting of the autophagy-specific class III PI3K had at most only modest effects on HRV-induced cell signalling as judged by induction of proinflammatory cytokine production. Our data indicate that PI3K and mTOR are involved in induction of proinflammatory cytokines after HRV infection, and that autophagy has little role in the cytokine response to HRV or control of HRV replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号