首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The majority of achlorophyllous mycoheterotrophic plant species associate with arbuscular mycorrhizal fungi (AMF). Previous studies have shown that some species are highly specialized towards narrow lineages of AMF and have suggested that only particular lineages of these fungi are targeted by mycoheterotrophic plants. To test this hypothesis, we analyzed all available partial SSU sequences of AMF associated with mycoheterotrophic plants including data from 13 additional specimens from French Guiana, Gabon and Australia. Sequences were assigned to 'virtual taxa' (VT) according to the MaarjAM database. We found that 20% of all known Glomeromycota VT are involved in mycoheterotrophic interactions and the majority of associations involve Glomeraceae (Glomus Group A) fungi. While some mycoheterotrophic plant species have been found growing with only a single VT, many species are able to associate with a wide range of AMF. We calculated significant phylogenetic clustering of Glomeromycota VT involved in mycoheterotrophic interactions, suggesting that associations between mycoheterotrophic plants and AMF are influenced by the phylogenetic relationships of the fungi. Our results demonstrate that many lineages of AMF are prone to exploitation by mycoheterotrophic plants. However, mycoheterotrophs from different plant lineages and different geographical regions tend to be dependent on lineages of AMF that are phylogenetically related.  相似文献   

2.
Partially mycoheterotrophic plant species obtain organic carbon, via both photosynthesis and mycorrhizal symbiosis. In this study, we investigated the mycorrhizal fungi association and nutritional mode of Cheirostylis liukiuensis, which is suspected to be a partial mycoheterotrophic plant, due to its characteristic reduced underground organs, low-light growth environment, and some fully mycoheterotrophic species in the phylogenetically related genera. Molecular analysis of the dominant mycobiont and stable isotope analysis suggested that C. liukiuensis is a partial mycoheterotrophic plant predominantly associate with non-ectomycorrhizal Ceratobasidiaceae fungi. As examples of partial mycoheterotrophic orchids exploiting non-ectomycorrhizal rhizoctonia are still limited, this study provides valuable information on the nutritional modes of green orchids.  相似文献   

3.
This study characterizes the molecular and phylogenetic identity of fungi involved in arbuscular mycorrhizal (AM) associations in extant Huperzia and Lycopodium (Lycopodiaceae). Huperzia and Lycopodium are characterized by a life cycle with long-lived autotrophic sporophytes and long-lived mycoheterotrophic (obtain all organic carbon from fungal symbionts) gametophytes. 18S ribosomal DNA was isolated and sequenced from Glomus symbionts in autotrophic sporophytes of seven species of Huperzia and Lycopodium and mycoheterotrophic Huperzia gametophytes collected from the Páramos of Ecuador. Phylogenetic analyses recovered four Glomus A phylotypes in a single clade (MH3) that form AM associations with Huperzia and Lycopodium. In addition, phylogenetic analyses of Glomus symbionts from other nonphotosynthetic plants demonstrate that most AM fungi that form mycoheterotrophic associations belong to at least four specific clades of Glomus A. These results suggest that most mycoheterotrophic plants that form AM associations do so with restricted clades of Glomus A. Moreover, the correspondence of identity of AM symbionts in Huperzia sporophytes and gametophytes raises the possibility that photosynthetic sporophytes are a source of carbon to conspecific mycoheterotrophic gametophytes via shared fungal networks.  相似文献   

4.
Many plant species are characterized by a life cycle with a long-lived, subterranean phase that is completely dependent on mycorrhizal fungal symbionts for fixed carbon. This type of life cycle is both phylogenetically and ecologically widespread and is found in diverse vascular plant lineages from the tropics to subalpine meadows. Here we report on the molecular identities of the arbuscular mycorrhizal fungi associated with the autotrophic and underground mycoheterotrophic life cycle phases of the ferns Botrychium crenulatum and B. lanceolatum. We show that the Glomus taxa found in the mycoheterotrophic life cycle phases of B. crenulatum and B. lanceolatum are also found in conspecific and heterospecific photosynthetic neighboring plants. From our DNA sequence data, we infer carbon flow from photosynthetic plants to mycoheterotrophic plants through shared glomalean fungal networks. Finally, our phylogenetic analyses identify a major Glomus clade that forms associations with mycoheterotrophic life cycle stages of B. crenulatum and B. lanceolatum.  相似文献   

5.

Background

Mycoheterotrophic plants are considered to associate very specifically with fungi. Mycoheterotrophic orchids are mostly associated with ectomycorrhizal fungi in temperate regions, or with saprobes or parasites in tropical regions. Although most mycoheterotrophic orchids occur in the tropics, few studies have been devoted to them, and the main conclusions about their specificity have hitherto been drawn from their association with ectomycorrhizal fungi in temperate regions.

Results

We investigated three Asiatic Neottieae species from ectomycorrhizal forests in Thailand. We found that all were associated with ectomycorrhizal fungi, such as Thelephoraceae, Russulaceae and Sebacinales. Based on 13C enrichment of their biomass, they probably received their organic carbon from these fungi, as do mycoheterotrophic Neottieae from temperate regions. Moreover, 13C enrichment suggested that some nearby green orchids received part of their carbon from fungi too. Nevertheless, two of the three orchids presented a unique feature for mycoheterotrophic plants: they were not specifically associated with a narrow clade of fungi. Some orchid individuals were even associated with up to nine different fungi.

Conclusion

Our results demonstrate that some green and mycoheterotrophic orchids in tropical regions can receive carbon from ectomycorrhizal fungi, and thus from trees. Our results reveal the absence of specificity in two mycoheterotrophic orchid-fungus associations in tropical regions, in contrast to most previous studies of mycoheterotrophic plants, which have been mainly focused on temperate orchids.  相似文献   

6.
? Premise of the study: An estimated 10% of plant species have evolved to steal C from their symbiotic fungal partners (mycoheterotrophy), and while physiological evidence for full and partial mycoheterotrophy is well developed in the Orchidaceae and Ericaceae, it is lacking for the majority of other mycoheterotrophic taxa. The family Gentianaceae not only contains several lineages of achlorophyllous mycoheterotrophs, but also contains species that are putative partially mycoheterotrophic. The North American genera Bartonia and Obolaria (Gentianaceae) are green but have leaves reduced to scales or foliose bracts and so have ambiguous mycoheterotrophic status. ? Methods: We investigated the natural abundance (13)C and (15)N profiles of both genera along with total N and chlorophyll content and investigated mycorrhizal infection using light microscopy. ? Key results: The shoots of B. virginica were significantly more enriched in (15)N than the surrounding vegetation but not in (13)C. In contrast, the shoots of O. virginica are not enriched in (15)N compared to the surrounding vegetation but were significantly enriched in (13)C. Total N concentrations were significantly higher than the surrounding vegetation in B. virginica, while the collaroid roots of both species were infected by arbuscular mycorrhizal fungi. ? Conclusions: This microscopic evidence coupled with the natural abundance stable isotope profiles strongly suggests that both species are partially mycoheterotrophic. However, differences in the root-shoot stable isotopic patterns relative to surrounding vegetation between B. virginica and O. virginica are suggestive of the utilization of different physiological pathways or extent of commitment to mycoheterotrophic C gain.  相似文献   

7.
Epipogium aphyllum is a rare Eurasian achlorophyllous forest orchid known to associate with fungi that form ectomycorrhizas, while closely related orchids of warm humid climates depend on wood- or litter-decomposer fungi. We conducted (13) C and (15) N stable isotope natural abundance analyses to identify the organic nutrient source of E. aphyllum from Central Norway. These data for orchid shoot tissues, in comparison to accompanying autotrophic plants, document C and N flow from ectomycorrhizal fungi to the orchid. DNA data from fungal pelotons in the orchid root cortex confirm the presence of Inocybe and Hebeloma, which are both fungi that form ectomycorrhizas. The enrichment factors for (13) C and (15) N of E. aphyllum are used to calculate a new overall average enrichment factor for mycoheterotrophic plants living in association with ectomycorrhizal fungi (ε(13) C ± 1 SD of 7.2 ± 1.6 ‰ and ε(15) N ± 1 SD of 12.8 ± 3.9 ‰). These can be used to estimate the fungal contribution to organic nutrient uptake by partially mycoheterotrophic plants where fully mycoheterotrophic plants are lacking. N concentrations in orchid tissue were unusually high and significantly higher than in accompanying autotrophic leaf samples. This may be caused by N gain of E. aphyllum from obligate ectomycorrhizal fungi. We show that E. aphyllum is an epiparasitic mycoheterotrophic orchid that depends on ectomycorrhizal Inocybe and Hebeloma to obtain C and N through a tripartite system linking mycoheterotrophic plants through fungi with forest trees.  相似文献   

8.
Because mycoheterotrophic plants fully depend on their mycorrhizal partner for their carbon supply, the major limiting factor for the geographic distribution of these plants may be the presence of their mycorrhizal partner. Although this factor may seem to be a disadvantage for increasing geographic distribution, widespread mycoheterotrophic species nonetheless exist. The mechanism causing the wide distribution of some mycoheterotrophic species is, however, seldom discussed. We identified the mycorrhizal partner of a widespread mycoheterotrophic orchid, Eulophia zollingeri, using 12 individuals from seven populations in Japan, Myanmar, and Taiwan by DNA-based methods. All fungal ITS sequences from the roots closely related to those of Psathyrella candolleana (Coprinaceae) from GenBank accessions and herbarium specimens. These results indicate that E. zollingeri is exclusively associated with the P. candolleana species group. Further, the molecular data support the wide distribution and wide-ranging habitat of this fungal partner. Our data provide evidence that a mycoheterotrophic plant can achieve a wide distribution, even though it has a high mycorrhizal specificity, if its fungal partner is widely distributed.  相似文献   

9.
Nonphotosynthetic mycorrhizal plants, so‐called mycoheterotrophic plants, have long attracted the curiosity of botanists and mycologists. Recent advances in molecular methods based on fungal‐specific PCR amplification have dramatically enhanced the identification of their host mycorrhizal fungi. However, studies investigating the fungal hosts of arbuscular mycorrhizae‐forming mycoheterotrophs are still limited in Asia, which is known as one of the diversity hot spots of mycoheterotrophs that parasitize arbuscular mycorrhizae (AM). Therefore, we aimed to reveal the mycorrhizal associations of two Asian, fully mycoheterotrophic Burmannia species by molecular identification. Sequences of the small subunit ribosomal DNA showed that both Burmannia species are associated with several distinct lineages of Glomus group Ab. Because Glomus group Ab fungi have been confirmed as fungal hosts of various mycoheterotrophic plants in Africa and South America, we suggest they are widely exploited by AM‐forming mycoheterotrophs globally.  相似文献   

10.
Many lineages of land plants (from lycopsids to angiosperms) have non-photosynthetic life cycle phases that involve obligate mycoheterotrophic arbuscular mycorrhizal (AM) associations where the plant host gains organic carbon through glomalean symbionts. Our goal was to isolate and phylogenetically identify the AM fungi associated with both the autotrophic and underground mycoheterotrophic life cycle phases of Psilotum nudum. Phylogenetic analyses recovered 11 fungal phylotypes in four diverse clades of Glomus A that form AM associations with P. nudum mycoheterotrophic gametophytes and autotrophic sporophytes, and angiosperm roots found in the same greenhouse pots. The correspondence of identities of AM symbionts in P. nudum sporophytes, gametophytes and neighboring angiosperms provides compelling evidence that photosynthetic heterospecific and conspecific plants can serve as the ultimate sources of fixed carbon for mycoheterotrophic gametophytes of P. nudum, and that the transfer of carbon occurs via shared fungal networks. Moreover, broader phylogenetic analyses suggest greenhouse Psilotum populations, like field-surveyed populations of mycoheterotrophic plants, form AM associations with restricted clades of Glomus A. The phylogenetic affinities and distribution of Glomus A symbionts indicate that P. nudum greenhouse populations have the potential to be exploited as an experimental system to further study the physiology, ecology and evolution of mycoheterotrophic AM associations. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
The vast majority of plants obtain an important proportion of vital resources from soil through mycorrhizal fungi. Generally, this happens in exchange of photosynthetically fixed carbon, but occasionally the interaction is mycoheterotrophic, and plants obtain carbon from mycorrhizal fungi. This process results in an antagonistic interaction between mycoheterotrophic plants and their fungal hosts. Importantly, the fungal‐host diversity available for plants is restricted as mycoheterotrophic interactions often involve narrow lineages of fungal hosts. Unfortunately, little is known whether fungal‐host diversity may be additionally modulated by plant–plant interactions through shared hosts. Yet, this may have important implications for plant competition and coexistence. Here, we use DNA sequencing data to investigate the interaction patterns between mycoheterotrophic plants and arbuscular mycorrhizal fungi. We find no phylogenetic signal on the number of fungal hosts nor on the fungal hosts shared among mycoheterotrophic plants. However, we observe a potential trend toward increased phylogenetic diversity of fungal hosts among mycoheterotrophic plants with increasing overlap in their fungal hosts. While these patterns remain for groups of plants regardless of location, we do find higher levels of overlap and diversity among plants from the same location. These findings suggest that species coexistence cannot be fully understood without attention to the two sides of ecological interactions.  相似文献   

12.
? Premise of the study: Plastid genomes of nonphotosynthetic, mycoheterotrophic plants represent apt systems in which to study effects of relaxed evolutionary constraints. The few mycoheterotrophic angiosperm plastomes sequenced to date display drastic patterns of degradation/reduction relative to those of photosynthetic relatives. The goal of this study was to focus on a mycoheterotrophic orchid hypothesized to be in the "early" stages of plastome degradation, to provide perspective on this process. ? Methods: Short-read sequencing was used to generate a complete plastome sequence for Corallorhiza striata var. vreelandii, a mycoheterotrophic orchid, to investigate the extent of plastome degradation. Patterns of nonsynonymous/synonymous mutations were also assessed, and comparisons were made between Corallorhiza and other heterotrophic plant lineages. ? Key results: Corallorhiza yielded a plastome of 137505 bp, with several photosynthesis-related genes either lost or pseudogenized. Members of all major photosynthesis complexes, except ATP-synthase genes, were affected. "Housekeeping" genes were intact, despite the loss of a single tRNA. Intact photosynthesis genes (excluding atp genes) together displayed elevated nonsynonymous changes, while housekeeping genes did not. ? Conclusions: The Corallorhiza plastome is not drastically reduced in overall size (~6% reduction relative to that of photosynthetic Oncidium), but displays a pattern congruent with a loss of photosynthetic function. Comparing Corallorhiza with other heterotrophs allows some emergent evolutionary patterns to be inferred, but these remain as hypotheses to be tested, especially at lower taxonomic levels, and in lineages illustrating transitions from autotrophy to heterotrophy. The independent, unique processes of plastome modification among mycoheterotrophic lineages illustrate the urgency of their conservation.  相似文献   

13.
Some green orchids obtain carbon from their mycorrhizal fungi, as well as from photosynthesis. These partially mycoheterotrophic orchids sometimes produce fully achlorophyllous, leaf‐bearing (albino) variants. Comparing green and albino individuals of these orchids will help to uncover the molecular mechanisms associated with mycoheterotrophy. We compared green and albino Epipactis helleborine by molecular barcoding of mycorrhizal fungi, nutrient sources based on 15N and 13C abundances and gene expression in their mycorrhizae by RNA‐seq and cDNA de novo assembly. Molecular identification of mycorrhizal fungi showed that green and albino E. helleborine harboured similar mycobionts, mainly Wilcoxina. Stable isotope analyses indicated that albino E. helleborine plants were fully mycoheterotrophic, whereas green individuals were partially mycoheterotrophic. Gene expression analyses showed that genes involved in antioxidant metabolism were upregulated in the albino variants, which indicates that these plants experience greater oxidative stress than the green variants, possibly due to a more frequent lysis of intracellular pelotons. It was also found that some genes involved in the transport of some metabolites, including carbon sources from plant to fungus, are higher in albino than in green variants. This result may indicate a bidirectional carbon flow even in the mycoheterotrophic symbiosis. The genes related to mycorrhizal symbiosis in autotrophic orchids and arbuscular mycorrhizal plants were also upregulated in the albino variants, indicating the existence of common molecular mechanisms among the different mycorrhizal types.  相似文献   

14.
Fully mycoheterotrophic plants offer a fascinating system for studying phylogenetic associations and dynamics of symbiotic specificity between hosts and parasites. These plants frequently parasitize mutualistic mycorrhizal symbioses between fungi and trees. Corallorhiza striata is a fully mycoheterotrophic, North American orchid distributed from Mexico to Canada, but the full extent of its fungal associations and specificity is unknown. Plastid DNA (orchids) and ITS (fungi) were sequenced for 107 individuals from 42 populations across North America to identify C. striata mycobionts and test hypotheses on fungal host specificity. Four largely allopatric orchid plastid clades were recovered, and all fungal sequences were most similar to ectomycorrhizal Tomentella (Thelephoraceae), nearly all to T. fuscocinerea. Orchid-fungal gene trees were incongruent but nonindependent; orchid clades associated with divergent sets of fungi, with a clade of Californian orchids subspecialized toward a narrow Tomentella fuscocinerea clade. Both geography and orchid clades were important determinants of fungal association, following a geographic mosaic model of specificity on Tomentella fungi. These findings corroborate patterns described in other fully mycoheterotrophic orchids and monotropes, represent one of the most extensive plant-fungal genetic investigations of fully mycoheterotrophic plants, and have conservation implications for the >400 plant species engaging in this trophic strategy worldwide.  相似文献   

15.
Studies of mycoheterotrophs, defined as plants that obtain carbon resources from associated mycorrhizal fungi, have fundamentally contributed to our understanding of the importance and complexity of symbiotic ecological interactions. However, to date, the reproductive ecology of these organisms remains empirically understudied, with existing literature presenting hypotheses about traits including a generalist pollination syndrome and autogamous self-pollination. To address this gap in our knowledge of the reproductive ecology of mycoheterotrophic plants, we comparatively analyzed three species of two monotropoid genera, Monotropa and Monotropsis. During three consecutive years of field observations and manipulations of four populations of Monotropa uniflora, seven of M. hypopitys (both red and yellow color forms), and two of Monotropsis odorata, we investigated flowering phenology, pollination ecology, breeding system, floral herbivory, and reproductive effort and output. Contrary to previous predictions, our results revealed that taxa are largely outcross-pollinated and specialized toward Bombus pollinators. Additionally, species differ in breeding system, timing and duration of reproductive development, fluctuations in reproductive effort and output, and fitness impacts of herbivory. This study is the first thorough investigation of the reproductive ecology of mycoheterotrophic species and provides insight into possible limitations in reproductive traits imposed by a mycoheterotrophic life history.  相似文献   

16.
Plants producing dust seeds often meet their carbon demands by exploiting fungi at the seedling stage. This germination strategy (i.e. mycoheterotrophic germination) has been investigated among orchidaceous and ericaceous plants exploiting Ascomycota or Basidiomycota. Although several other angiosperm lineages have evolved fully mycoheterotrophic relationships with Glomeromycota, the fungal identities involved in mycoheterotrophic germination remain largely unknown. Here, we conducted in situ seed baiting and high-throughput DNA barcoding to identify mycobionts associated with seedlings of Burmannia championii (Burmanniaceae: Dioscoreales) and Sciaphila megastyla (Triuridaceae: Pandanales), which have independently evolved full mycoheterotrophy. Subsequently, we revealed that both seedlings and adults in B. championii and S. megastyla predominantly associate with Glomeraceae. However, mycorrhizal communities are somewhat distinct between seedling and adult stages, particularly in S. megastyla. Notably, the dissimilarity of mycorrhizal communities between S. megastyla adult samples and S. megastyla seedling samples is significantly higher than that between B. championi adult samples and S. megastyla adult samples, based on some indices. This pattern is possibly due to both mycorrhizal shifts during ontogenetic development and convergent recruitment of cheating-susceptible fungi. The extensive fungal overlap in two unrelated mycoheterotrophic plants indicates that both species convergently exploit specific AM fungal phylotypes.  相似文献   

17.
Among land plants, which generally exhibit autotrophy through photosynthesis, about 880 species are mycoheterotrophs, dependent on mycorrhizal fungi for their carbon supply. Shifts in nutritional mode from autotrophy to mycoheterotrophy are usually accompanied by evolution of various combinations of characters related to structure and physiology, e.g., loss of foliage leaves and roots, reduction in seed size, degradation of plastid genome, and changes in mycorrhizal association and pollination strategy. However, the patterns and processes involved in such alterations are generally unknown. Hybrids between autotrophic and mycoheterotrophic plants may provide a breakthrough in molecular studies on the evolution of mycoheterotrophy. We have produced the first hybrid between autotrophic and mycoheterotrophic plant species using the orchid group Cymbidium. The autotrophic Cymbidium ensifolium subsp. haematodes and mycoheterotrophic C. macrorhizon were artificially pollinated, and aseptic germination of the hybrid seeds obtained was promoted by sonication. In vitro flowering was observed five years after seed sowing. Development of foliage leaves, an important character for photosynthesis, segregated in the first generation; that is, some individuals only developed scale leaves on the rhizome and flowering stems. However, all of the flowering plants formed roots, which is identical to the maternal parent.  相似文献   

18.
Mycoheterotrophic species have abandoned an autotrophic lifestyle and obtain carbon exclusively from mycorrhizal fungi. Although these species have evolved independently in many plant families, such events have occurred most often in the Orchidaceae, resulting in the highest concentration of these species in the tracheophytes. Studies of mycoheterotrophic species' mycobionts have generally revealed extreme levels of mycorrhizal specialization, suggesting that this system is ideal for studying the evolution of mycorrhizal associations. However, these studies have often investigated single or few, often unrelated, species without consideration of their phylogenetic relationships. Herein, we present the first investigation of the mycorrhizal associates of all species of a well-characterized orchid genus comprised exclusively of mycoheterotrophic species. With the employment of molecular phylogenetic methods, we identify the fungal associates of each of nine Hexalectris species from 134 individuals and 42 populations. We report that Hexalectris warnockii associates exclusively with members of the Thelephoraceae, H. brevicaulis and H. grandiflora associate with members of the Russulaceae and Sebacinaceae subgroup A, while each member of the H. spicata species complex associates primarily with unique sets of Sebacinaceae subgroup A clades. These results are consistent with other studies of mycorrhizal specificity within mycoheterotrophic plants in that they suggest strong selection within divergent lineages for unique associations with narrow clades of mycorrhizal fungi. Our results also suggest that mycorrhizal associations are a rapidly evolving characteristic in the H. spicata complex.  相似文献   

19.
Mycoheterotrophic and parasitic plants are heterotrophic and parasitize on fungi and plants, respectively, to obtain nutrients. Large-scale comparative genomics analysis has not been conducted in mycoheterotrophic or parasitic plants or between these two groups of parasites. We assembled a chromosome-level genome of the fully mycoheterotrophic plant Gastrodia elata (Orchidaceae) and performed comparative genomic analyses on the genomes of G. elata and four orchids (initial mycoheterotrophs), three parasitic plants (Cuscuta australis, Striga asiatica, and Sapria himalayana), and 36 autotrophs from various angiosperm lineages. It was found that while in the hemiparasite S. asiatica and initial mycoheterotrophic orchids, approximately 4–5% of the conserved orthogroups were lost, the fully heterotrophic G. elata and C. australis both lost approximately 10% of the conserved orthogroups, indicating that increased heterotrophy is positively associated with gene loss. Importantly, many genes that are essential for autotrophs, including those involved in photosynthesis, the circadian clock, flowering time regulation, immunity, nutrient uptake, and root and leaf development, were convergently lost in both G. elata and C. australis. The high-quality genome of G. elata will facilitate future studies on the physiology, ecology, and evolution of mycoheterotrophic plants, and our findings highlight the critical role of gene loss in the evolution of plants with heterotrophic lifestyles.  相似文献   

20.
The RuBisCO large subunit gene (rbcL) has been the focus of numerous plant phylogenetic studies and studies on molecular evolution in parasitic plants. However, there has been a lack of investigation of photosynthesis gene molecular evolution in fully mycoheterotrophic plants. These plants invade pre-existing mutualistic associations between ectomycorrhizal trees and fungi, from which they obtain fixed carbon and nutrients. The mycoheterotrophic orchid Corallorhiza contains both green (photosynthetic) and non-green (putatively nonphotosynthetic) species. We sequenced rbcL from 31 accessions of eight species of Corallorhiza and hypothesized that some lineages would have pseudogenes resulting from relaxation of purifying selection on RuBisCO's carboxylase function. Phylogenetic analysis of rbcL+ITS gave high jackknife support for relationships among species. We found evidence of pseudogene formation in all lineages of the Corallorhiza striata complex and in some lineages of the C. maculata complex. Evidence includes: stop codons, frameshifts, decreased d(S)/d(N) ratios, replacements not observed in photosynthetic species, rate heterogeneity, and high likelihood of neutral evolution. The evolution of rbcL in Corallorhiza may serve as an exemplary system in which to study the effects of relaxed evolutionary constraints on photosynthesis genes for >400 documented fully mycoheterotrophic plant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号