首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Energy storage challenges have triggered growing interest in various battery technologies and electrocatalysis. As a particularly promising variety, the Li–O2 battery with an extremely high energy density is of great significance, offering tremendous opportunities to improve cell performance via understanding catalytic mechanisms and the exploration of new materials. Furthermore, focus on nonaqueous electrolyte‐based Li–O2 batteries has markedly intensified since there could be a higher probability of commercialization, compared to that of solid‐state or aqueous electrolytes. The recent advancements of the nonaqueous Li–O2 battery in terms of fundamental understanding and material challenges, including electrolyte stability, water effect, and noncarbon cathode materials are summarized in this review. Further, the current status of water impact on discharge products, possible mechanisms, and parasitic reactions in nonaqueous electrolytes are reviewed for the first time. The key challenges of noncarbon oxygen electrode materials, such as noble metals and metal oxides‐based cathodes, transition metals, transition metal compounds (carbides, oxides) based cathodes as well as noncarbon supported catalysts are discussed. This review concludes with a perspective on future research directions for nonaqueous Li–O2 batteries.  相似文献   

2.
Although the rechargeable lithium–oxygen (Li–O2) batteries have extremely high theoretical specific energy, the practical application of these batteries is still limited by the instability of their carbon‐based air‐electrode, Li metal anode, and electrodes, toward reduced oxygen species. Here a simple one‐step in situ electrochemical precharging strategy is demonstrated to generate thin protective films on both carbon nanotubes (CNTs), air‐electrodes and Li metal anodes simultaneously under an inert atmosphere. Li–O2 cells after such pretreatment demonstrate significantly extended cycle life of 110 and 180 cycles under the capacity‐limited protocol of 1000 mA h g?1 and 500 mA h g?1, respectively, which is far more than those without pretreatment. The thin‐films formed from decomposition of electrolyte during in situ electrochemical precharging processes in an inert environment, can protect both CNTs air‐electrode and Li metal anode prior to conventional Li–O2 discharge/charge cycling, where reactive reduced oxygen species are formed. This work provides a new approach for protection of carbon‐based air‐electrodes and Li metal anodes in practical Li–O2 batteries, and may also be applied to other battery systems.  相似文献   

3.
Rechargeable aprotic Li–O2 batteries are one of the most promising next‐generation battery technologies that can deliver extremely high energy density. In the past decades, this technology has attracted worldwide attention, and considerable progress has been achieved. However, numerous critical scientific challenges remain to be solved for practical applications. A specific discussion of recent progress from the perspective of the stable aprotic Li–O2 system with high energy efficiency is presented. The discussion is highlighted on the reaction mechanisms on air cathode, stability of cell components in semi‐open surroundings, and improvement of battery performance by catalyst design. Challenges and perspectives are also presented. This study provides an intensive understanding of aprotic Li–O2 batteries and offers an important guideline for developing reversible and high‐efficiency Li–O2 batteries.  相似文献   

4.
The rechargeable Li–O2 battery has attracted much attention over the past decades owing to its overwhelming advantage in theoretical specific energy density compared to state‐of‐the‐art Li‐ion batteries. Practical application requires non‐aqueous Li–O2 batteries to stably obtain high reversible capacity, which highly depends on a suitable electrolyte system. Up to now, some critical challenges remain in developing desirable non‐aqueous electrolytes for Li–O2 batteries. Herein, we will review the current status and challenges in non‐aqueous liquid electrolytes, ionic liquid electrolytes and solid‐state electrolytes of Li–O2 batteries, as well as the perspectives on these issues and future development.  相似文献   

5.
The nonaqueous lithium–oxygen (Li–O2) battery is considered as one of the most promising candidates for next‐generation energy storage systems because of its very high theoretical energy density. However, its development is severely hindered by large overpotential and limited capacity, far less than theory, caused by sluggish oxygen redox kinetics, pore clogging by solid Li2O2 deposition, inferior Li2O2/cathode contact interface, and difficult oxygen transport. Herein, an open‐structured Co9S8 matrix with sisal morphology is reported for the first time as an oxygen cathode for Li–O2 batteries, in which the catalyzing for oxygen redox, good Li2O2/cathode contact interface, favorable oxygen evolution, and a promising Li2O2 storage matrix are successfully achieved simultaneously, leading to a significant improvement in the electrochemical performance of Li–O2 batteries. The intrinsic oxygen‐affinity revealed by density functional theory calculations and superior bifunctional catalytic properties of Co9S8 electrode are found to play an important role in the remarkable enhancement in specific capacity and round‐trip efficiency for Li–O2 batteries. As expected, the Co9S8 electrode can deliver a high discharge capacity of ≈6875 mA h g?1 at 50 mA g?1 and exhibit a low overpotential of 0.57 V under a cutoff capacity of 1000 mA h g?1, outperforming most of the current metal‐oxide‐based cathodes.  相似文献   

6.
Li–CO2 batteries are attractive electrical energy storage devices; however, they still suffer from unsatisfactory electrochemical performance, and the kinetics of CO2 reduction and evolution reactions must be improved significantly. Herein, a composite of ruthenium–copper nanoparticles highly co‐dispersed on graphene (Ru–Cu–G) as efficient air cathodes for Li–CO2 batteries is designed. The Li–CO2 batteries with Ru–Cu–G cathodes exhibit ultra‐low overpotential and can be operated for 100 cycles with a fixed capacity of 1000 mAh g?1 at 200 and 400 mA g?1. The synergistic effect between Ru and Cu not only regulates the growth of discharge products, but also promotes CO2 reduction and evolution reactions by changing the electron cloud density of the surface between Ru and Cu. This work may provide new directions and strategies for developing highly efficient air cathodes for Li–CO2 batteries, or even practical Li–air batteries.  相似文献   

7.
The Li–O2 battery (LOB) represents a promising candidate for future electric vehicles owing to its outstanding energy density. However, the practical application of LOB cells is largely blocked by the poor cycling performance of cathode materials. Herein, an ultralong 440‐cycle life of an LOB cell is achieved using CeO2 nanocubes super‐assembled on an inverse opal carbon matrix as the cathode material without any additives. CeO2 is proved to be effective for the complete and sensitive decomposition of loosely stacked Li2O2 films during the oxygen evolution reaction process and full accommodation of volume changes caused by the fast growth of Li2O2 films during the oxygen reduction reaction process. The super‐assembled porous CeO2/C frameworks satisfy critical requirements including controlled size, morphology, high Ce3+/Ce4+ ratio, and efficient volume change accommodation, which dramatically increase the cycle life of LOB cell to 440 cycles. This study reveals the design strategy for high performance CeO2 catalyst cathodes for LOB cells and the generation mechanisms of Li2O2 films during the discharge process by using density functional theory calculations, showing new avenues for improving the future smart design of CeO2‐based cathode catalysts for Li–O2 batteries.  相似文献   

8.
Alkali metal–O2 batteries, by coupling high‐capacity alkali metal anodes with gaseous oxygen, possess extremely high gravimetric energy density that is comparable to gasoline and are potential energy storage technologies beyond lithium–ion batteries. The development of alkali metal–O2 batteries has achieved great progress in recent years, from materials to prototype devices and on fundamental mechanisms. The stability of alkali metal–O2 batteries is still poor, however, leading to a huge gap between laboratory research and commercial applications. A series of parasitic reactions result in the instability, which occur during electrochemical discharging and charging. The ubiquitous active oxygen species attack both the organic electrolyte and the carbon cathode, triggering various parasitic reactions. Meanwhile, dendrite growth and volume expansion upon repeated plating/stripping and O2 crossover severely limit the reversibility of alkali metal anodes. Here, an overview of the strategies against these issues is given to improve the stability of nonaqueous alkali metal–O2 batteries, which is discussed from three aspects: air cathodes, alkali metal anodes, and aprotic electrolytes. Furthermore, perspectives for future research of stable alkali metal–O2 batteries are outlined.  相似文献   

9.
With high theoretical energy density, rechargeable metal–gas batteries (e.g., Li–CO2 battery) are considered as one of the most promising energy storage devices. However, their practical applications are hindered by the sluggish reaction kinetics and discharge product accumulation during battery cycling. Currently, the solutions focus on exploration of new catalysts while the thorough understanding of their underlying mechanisms is often ignored. Herein, the interfacial electronic interaction within rationally designed catalysts, ZnS quantum dots/nitrogen‐doped reduced graphene oxide (ZnS QDs/N‐rGO) heterostructures, and their effects on transformation and deposition of discharge products in the Li–CO2 battery are revealed. In this work, the interfacial interaction can both enhance the catalytic activities of ZnS QDs/N‐rGO heterostructures and induce the nucleation of discharge products to form a homogeneous Li2CO3/C film with excellent electronic transmission and high electrochemical activities. When the batteries cycle within a cutoff specific capacity of 1000 mAh g?1 at a current density of 400 mA g?1, the cycling performance of the Li–CO2 battery using a ZnS QDs/N‐rGO cathode is over 3 and 9 times than those coupled with a ZnS nanosheets (NST)/N‐rGO cathode and a N‐rGO cathode, respectively. This work provides comprehensive understandings on designing catalysts for Li–CO2 batteries as well as other rechargeable metal–gas batteries.  相似文献   

10.
Both the energy density and cycle stability are still challenges for lithium–sulfur (Li–S) batteries in future practical applications. Usually, light‐weight and nonpolar carbon materials are used as the hosts of sulfur, however they struggle on the cycle stability and undermine the volumetric energy density of Li–S batteries. Here, heavy NiCo2O4 nanofibers as carbon‐free sulfur immobilizers are introduced to fabricate sulfur‐based composites. NiCo2O4 can accelerate the catalytic conversion kinetics of soluble intermediate polysulfides by strong chemical interaction, leading to a good cycle stability of sulfur cathodes. Specifically, the S/NiCo2O4 composite presents a high gravimetric capacity of 1125 mAh g?1 at 0.1 C rate with the composite as active material, and a low fading rate of 0.039% per cycle over 1500 cycles at 1 C rate. In particular, the S/NiCo2O4 composite with the high tap density of 1.66 g cm?3 delivers large volumetric capacity of 1867 mAh cm?3, almost twice that of the conventional S/carbon composites.  相似文献   

11.
The critical challenges of Li‐O2 batteries lie in sluggish oxygen redox kinetics and undesirable parasitic reactions during the oxygen reduction reaction and oxygen evolution reaction processes, inducing large overpotential and inferior cycle stability. Herein, an elaborately designed 3D hierarchical heterostructure comprising NiCo2S4@NiO core–shell arrays on conductive carbon paper is first reported as a freestanding cathode for Li‐O2 batteries. The unique hierarchical array structures can build up multidimensional channels for oxygen diffusion and electrolyte impregnation. A built‐in interfacial potential between NiCo2S4 and NiO can drastically enhance interfacial charge transfer kinetics. According to density functional theory calculations, intrinsic LiO2‐affinity characteristics of NiCo2S4 and NiO play an importantly synergistic role in promoting the formation of large peasecod‐like Li2O2, conducive to construct a low‐impedance Li2O2/cathode contact interface. As expected, Li‐O2 cells based on NiCo2S4@NiO electrode exhibit an improved overpotential of 0.88 V, a high discharge capacity of 10 050 mAh g?1 at 200 mA g?1, an excellent rate capability of 6150 mAh g?1 at 1.0 A g?1, and a long‐term cycle stability under a restricted capacity of 1000 mAh g?1 at 200 mA g?1. Notably, the reported strategy about heterostructure accouplement may pave a new avenue for the effective electrocatalyst design for Li‐O2 batteries.  相似文献   

12.
Promising lithium–oxygen batteries (LOBs) with extra‐high capacities have attracted increasing attention for use in future electric devices. However, the challenges facing this complicated battery system still limit their practical applications. These challenges mainly consist of inefficient product evolution and low‐activity catalysts. In present work, a cation occupying, modified 3D‐architecture NiFeO cubic spinel is constructed via superassembly strategy to achieve a high rate, stable electrocatalyst for LOBs. The octahedron predominant spinel provides a stable polycrystal structure and optimized electronic structure, which dominates the discharge/charge products evolution with multiformation kinetics of crystal Li2O2 and Li2?xO2 at low and high rate conditions and energetically favors the mass transport between the electrode/electrolyte interface. Simultaneously, the porous NiFeO framework provides adequate spaces for Li2O2 accommodation and complex channels for sufficient electrolyte, oxygen, and ion transportation, which dramatically alter the cathode catalysis for an unprecedented performance. As a consequence, a large specific capacity of 23413 mAh g?1 and an excellent cyclability of 193 cycles at a high current of 1000 mA g?1, and 300 cycles at a current of 500 mA g?1, are achieved. The present work provides intrinsic insights into designing high‐performance metal oxide electrocatalysts for Li–O2 batteries with fine‐tuned electronic and frame structure.  相似文献   

13.
There is a growing concern about the cyclability and safety, in particular, of the high‐energy density lithium–metal batteries. This concern is even greater for Li–O2 batteries because O2 that is transported from the cathode to the anode compartment, can exacerbate side reactions and dendrite growth of the lithium metal anode. The key to solving this dilemma lays in tailoring the solid electrolyte interphase (SEI) formed on the lithium metal anode in Li–O2 batteries. Here it is reported that a new electrolyte, formed from LiFSI as the salt and a mixture of tetraethylene glycol dimethyl ether and polymeric ionic liquid of P[C5O2NMA,11]FSI as the solvent, can produce a stable electrode (both cathode and anode)|electrolyte interface in Li–O2 batteries. Specifically, this new electrolyte, when in contact with lithium metal anodes, has the ability to produce a uniform SEI with high ionic conductivity for Li+ transport and desired mechanical property for suppression of dendritic lithium growth. Moreover, the electrolyte possesses a high oxidation tolerance that is very beneficial to the oxygen electrochemistry on the cathode of Li–O2 batteries. As a result, enhanced reversibility and cycle life are realized for the resultant Li–O2 batteries.  相似文献   

14.
Lithium–sulfur (Li–S) batteries are a very appealing power source with extremely high energy density. But the use of a metallic‐Li anode causes serious safety hazards, such as short‐circuiting and explosion of the cells. Replacing a sulfur cathode with a fully‐lithiated lithium sulfide (Li2S) to pair with metallic‐Li‐free high‐capacity anodes paves a feasible way to address this issue. However, the practical utility of Li2S cathodes faces the challenges of poor conductivity, sluggish activation process, and high sensitivity to moisture and oxygen that make electrode production more difficult than dealing with sulfur cathodes. Here, an efficient but low‐cost strategy for easy production of freestanding flexible Li2S‐based paper electrodes with very high mass and capacity loading in terms of in situ carbonthermal reduction of Li2SO4 by electrospinning carbon is reported. This chemistry enables high loading but strong affinity of ultrafine Li2S nanoparticles in a freestanding conductive carbon‐nanofiber network, meanwhile greatly reducing the manufacturing complexity and cost of Li2S cathodes. Benefiting from enhanced structural stability and reaction kinetics, the areal specific capacities of such cathodes can be significantly boosted with less sacrificing of high‐rate and cycling capability. This unique Li2S‐cathode design can be directly applied for constructing metallic‐Li‐free or flexible Li–S batteries with high‐energy density.  相似文献   

15.
Due to unprecedented features including high‐energy density, low cost, and light weight, lithium–sulfur batteries have been proposed as a promising successor of lithium‐ion batteries. However, unresolved detrimental low Li‐ion transport rates in traditional carbon materials lead to large energy barrier in high sulfur loading batteries, which prevents the lithium–sulfur batteries from commercialization. In this report, to overcome the challenge of increasing both the cycling stability and areal capacity, a metallic oxide composite (NiCo2O4@rGO) is designed to enable a robust separator with low energy barrier for Li‐ion diffusion and simultaneously provide abundant active sites for the catalytic conversion of the polar polysulfides. With a high sulfur‐loading of 6 mg cm?2 and low sulfur/electrolyte ratio of 10, the assembled batteries deliver an initial capacity of 5.04 mAh cm?2 as well as capacity retention of 92% after 400 cycles. The metallic oxide composite NiCo2O4@rGO/PP separator with low Li‐ion diffusion energy barrier opens up the opportunity for lithium–sulfur batteries to achieve long‐cycle, cost‐effective operation toward wide applications in electric vehicles and electronic devices.  相似文献   

16.
Recently, various approaches for adding redox mediators to electrolytes and introducing protective layers onto Li metal have been suggested to overcome the low energy efficiency and poor cycle life of Li–O2 batteries. However, the catalytic effect of the redox mediator for oxygen evolution gradually deteriorates during repeated cycling owing to its decomposition at the surfaces of both the oxygen electrode (cathode) and the Li metal electrode (anode). Here, optimized Li–O2 batteries are designed with a continuously effective redox mediator and a stable protective layer for the Li metal electrode by optimizing the LiBr concentration and introducing a graphene–polydopamine composite layer, respectively. These synergistic modifications lead to a reduction of the charge potential to below 3.4 V and significantly improve the stability and cycle life of Li–O2 batteries. Consequently, a high energy efficiency of above 80% is maintained over 150 cycles. Herein, it is confirmed that the relationships between all the battery materials should be understood in order to improve the performance of Li–O2 batteries.  相似文献   

17.
The high overpotential caused by the slow kinetics of oxygen reduction (ORR) and oxygen evolution (OER) has greatly limited the practical application of lithium-oxygen (Li−O2) batteries. The adoption of force-field-assisted system based on a newly developed piezocatalysis is promising in reducing the overpotential. Herein, a force-assisted Li−O2 battery is first established by employing MoS2/Pd nanocomposite cathode, in which the piezoelectric polarization as well as built-in electric field are formed in MoS2 piezoelectric catalyst under ultrasound activation, leading to the continuously separated electrons and holes to enhance the ORR and OER kinetics. Moreover, the introduction of Pd can promote the electrons transfer and further inhibit the complexation of electron–hole pairs, contributing to enhanced catalytic activity in the decomposition/generation of discharge products, resulting in reduced discharge/charge overpotentials. Thus, the force-assisted MoS2/Pd-based Li−O2 battery is capable of adjusting the output and input energies by the assisted ultrasonic wave. An ultra-low charging platform of 2.86 V and a high discharging platform of 2.77 V are achieved. The proposed unique force-assisted strategy can also be applied to lithium carbon dioxide battery system through the effective reduction and separation of CO2 and CO32−, providing significant insights in achieving efficient energy conversion for metal−air batteries.  相似文献   

18.
Lithium–sulfur (Li–S) batteries have attracted increasing attention due to their extremely high theoretical specific capacity and a promising power density. However, practical applications of Li–S batteries are still limited by the relatively low performance, owing to poor conductivity of sulfur itself and discharge products (Li2S/Li2S2) as well as the shuttle effect of the intermediate polysulfide. Herein, honeycomb‐like mesoporous Co, N‐doped carbon nanosheets (MC‐NS) with a high specific surface area and abundant defects are developed which, simultaneously enable polysulfide confinement and highly efficient conversion. Moreover, density functional theory calculations and experiments show that the Co‐N‐C catalytic site as well as defects on the carbon skeleton of the MC‐NS facilitate high efficiency in suppressing the shuttle effect of polysulfides. In situ Raman spectra further demonstrate the enhancement of adsorption ability and conversion efficiency of polysulfides on this host. As a result, the MC‐NS enables much increased specific capacity and cycling stability of Li–S batteries. This work provides a useful strategy for realizing practical applications of high‐performance Li–S batteries.  相似文献   

19.
The conventional electrolyte of 1 m lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in dimethyl sulfoxide (DMSO) is unstable against the Li metal anode and therefore cannot be used directly in practical Li–O2 batteries. Here, we demonstrate that a highly concentrated electrolyte based on LiTFSI in DMSO (with a molar ratio of 1:3) can greatly improve the stability of the Li metal anode against DMSO and significantly improve the cycling stability of Li–O2 batteries. This highly concentrated electrolyte contains no free DMSO solvent molecules, but only complexes of (TFSI?)a ? Li+? (DMSO)b (where a + b = 4), and thus enhances their stability with Li metal anodes. In addition, such salt–solvent complexes have higher Gibbs activation energy barriers than the free DMSO solvent molecules, indicating improved stability of the electrolyte against the attack of superoxide radical anions. Therefore, the stability of this highly concentrated electrolyte at both Li metal anodes and carbon‐based air electrodes has been greatly enhanced, resulting in improved cycling performance of Li–O2 batteries. The fundamental stability of the electrolyte in the absence of free‐solvent against the chemical and electrochemical reactions can also be used to enhance the stability of other electrochemical systems.  相似文献   

20.
Recently, a consensus has been reached that using lithium metal as an anode in rechargeable Li‐ion batteries is the best way to obtain the high energy density necessary to power electronic devices. Challenges remain, however, with respect to controlling dendritic Li growth on these electrodes, enhancing compatibility with carbonate‐based electrolytes, and forming a stable solid–electrolyte interface layer. Herein, a groundbreaking solution to these challenges consisting in the preparation of a Li2TiO3 (LT) layer that can be used to cover Li electrodes via a simple and scalable fabrication method, is suggested. Not only does this LT layer impede direct contact between electrode and electrolyte, thus avoiding side reactions, but it assists and expedites Li‐ion flux in batteries, thus suppressing Li dendrite growth. Other effects of the LT layer on electrochemical performance are investigated by scanning electron microscopy, electrochemical impedance spectroscopy, and galvanostatic intermittent titration technique analyses. Notably, LT layer‐incorporating Li cells comprising high‐capacity/voltage cathodes with reasonably high mass loading (LiNi0.8Co0.1Mn0.1O2, LiNi0.5Mn1.5O4, and LiMn2O4) show highly stable cycling performance in a carbonate‐based electrolyte. Therefore, it is believed that the approach based on the LT layer can boost the realization of high energy density lithium metal batteries and next‐generation batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号