首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationship between the A-ring chair conformation of vitamin D compounds and their ability to bind the vitamin D receptor (VDR) has long attracted the attention of many researchers. It was established that in the crystalline complexes of hVDRmt with the natural hormone, 1α,25-dihydroxyvitamin D3 (1), and its side-chain analogs the vitamins exist in β-chair form with an equatorial orientation of 1α-OH. However, with all these ligands the interconversion between both A-ring forms would be possible in solution. In an attempt to verify the conformation of vitamin D compounds required for binding the VDR we prepared analog 4, characterized by the presence of an axial 1α-hydroxy group. Since the additional ring connecting 3β-oxygen and C-2 prevents A-ring conformational flexibility, the synthesized vitamin 4 can exist exclusively in the α-chair form. The geometrical isomer 5 with a free 3β-OH group was also obtained. The analog 5 binds very poorly to VDR, whereas the vitamin 4 is practically devoid of binding ability. Both compounds also show very low HL-60-differentiating activity. When tested in vivo in mice the analogs 4 and 5 exhibit significant calcemic responses with analog 4 showing more activity than analog 5.  相似文献   

2.
The effect of the position of the phenolic hydroxyl on the conformations of the three A-ring isomers of estradiol, namely, estra-1,3,5(10)-trien-1,17 beta-diol (10), estra-1,3,5(10)-trien-2,17 beta-diol (3), and estra-1,3,5(10)-trien-4,17 beta-diol (6), has been analyzed by X-ray crystallography. The results of these analyses were correlated with the absorptions of the angular methyl groups in the [1H]NMR spectra of these isomers and natural estradiol (E2). It was observed that the changes in chemical shift of protons at C18 corresponded to skeletal modifications in the steroid structure which changed the anisotropic effect of the hydroxyl group at C17. Examination of the affinity of these A-ring isomers of E2 for the estrogen receptor has shown the 2-hydroxylated isomer 3 to retain 1/5th the affinity of E2 for its binding protein. The 1- and 4-hydroxylated derivatives (10 and 6, respectively) bound to a much lesser extent. The receptor affinities of these estrogen analogues may be related to the angle between the 18-methyl and the 17 beta-hydroxyl groups (or the dihedral angle between the planar A-ring and the angular C18 methyl) as well as the position of the A-ring hydroxyl group.  相似文献   

3.
In the course of our studies of hydrophobic oxytocin (OT) analogues, we newly synthesized lipidated OT (LOT-4a-c and LOT-5a-c), in which a long alkyl chain (C14-C16) is conjugated via a carbonate or carbamate linkage at the Tyr-2 phenolic hydroxy group and a palmitoyl group at the terminal amino group of Cys-1. These LOTs did not activate OT and vasopressin receptors. Among the LOTs, however, LOT-4c, having a C16-chain via a carbonate linkage at the phenolic hydroxyl group of the Tyr-2, showed very long-lasting action for the recovery of impaired social behavior in CD38 knockout mice, a rodent model of autistic phenotypes, whereas the effect of OT itself rapidly diminished. These results indicate that LOT-4c may serve as a potential prodrug in mice.  相似文献   

4.
A series of hydroxyalkylaminomethylchromone analogs 3 were prepared and evaluated as inhibitors of interleukin-5. The most active analog 3d inhibited interleukin-5 activity with an IC50 of 17.5 μM. The structural requirements of chromone analogs possessing the inhibitory activity against IL-5 could be summarized as: (i) the cyclohexylmethoxy group at 5th position of the A ring, (ii) the planarity of chromone ring, (iii) hydrophobic unit around the B ring with hydroxyl functional group, (iv) the hydrophobic unit which does not have to be a planar and (v) the length of carbon units between amino and hydroxyl group is limited to two.  相似文献   

5.
Starting from 9-methyl-1,2,3,4,9,9a-hexahydro-4aH-pyrido[2,3-b]indol-4a-ol, or indole-3-acetonitrile, 40 new calycanthaceous alkaloid analogs were synthesized in excellent yields. The prepared compounds were evaluated for biological activity against acetylcholinesterase and a broad range of plant pathogen fungi. The results of bioassays indicated that the majority of tested compounds displayed comparable or better in vitro bioactivity than the positive control. Notably, compounds b8 and b9 showed higher activity against Verticillium dahlia than chlorothalonil, with MIC values of 62.5 and 7.81 µg mL−1, respectively. Compound b3 had a higher activity against Bacillus cereus, with a MIC value of 15.63 µg mL−1. Compounds c2 and c11 revealed potent activity against acetylcholinesterase, with MIC values of 0.01 and 0.1 ng mL−1, respectively. Analysis of the molecular docking modes of c2 and c11 with Torpedo californica acetylcholinesterase indicated a medium strong hydrogen bond interaction between the hydroxyl groups of both the ligands and the phenolic hydroxyl of Try121 at a distance of approximately 2.4 Å. The results obtained in this study will be useful for the further design and structural optimization of calycanthaceous alkaloids as potential agrochemical lead compounds for plant disease control.  相似文献   

6.
A series of selenophene derivatives 3 were synthesized as potential CHK1 inhibitors. The effects of substitution on the 4′- or 5′-position of selenophene moiety and shifting the hydroxyl group position on C6- phenolic ring of oxindole were explored. This study led to the discovery of the most potent CHK1 inhibitors 2933 and 3943, which had IC50 values in the subnanomolar range.  相似文献   

7.
The 18-deoxy derivative (3) of a simplified analogue (1) of aplysiatoxin with antiproliferative activity was synthesized to examine the role of the phenolic hydroxyl group at position 18 in the biological activities of 1. Compound 3 as well as 1 showed significant affinity for protein kinase Cδ (PKCδ), and the antiproliferative activity of 3 was slightly higher than that of 1. However, the anti-tumor-promoting activity of 3 was less than that of 1 in vitro, suggesting that the phenolic hydroxyl group of 1 is necessary for the anti-tumor-promoting activity but not for the binding of PKCδ and antiproliferative activity. Moreover, PKC isozyme selectivity of 3 was similar to that of 1, suggesting non-PKC receptors for these compounds to play some roles in the anti-tumor-promoting activity of 1.  相似文献   

8.
Attempts to block metabolism by incorporating a 9-fluoro substituent at the A-ring of compound 1 (SCH 900229) using electrophilic Selectfluor? led to an unexpected oxidation of the A-ring to give difluoroquinone analog 1a. Oxidation of other related chromene γ-secretase inhibitors 28 resulted in similar difluoroquinone analogs 2a8a, respectively. These quinone products exhibited comparable in vitro potency in a γ-scretase membrane assay, but were several fold less potent in a cell-based assay in lowering Aβ40–42, compared to their parent compounds.  相似文献   

9.
A series of prenylflavonoids with multiple hydroxyl groups were synthesized and evaluated for their vasorelaxant activities against rat aorta rings pre-contracted by phenylephrine (PE), as well as their neuroprotective effects against OGD induced PC12 cell injury. The results indicated that the prenyl group at A-ring of prenylflavonoids, as well as hydroxyl groups at B-ring was important for their activities. (±)Leachianone G 1b, bearing 8-prenyl and 2′,4′-dihydoxyl groups, exhibited the most potent vasorelaxant and neuroprotective effects.  相似文献   

10.
Using proton NMR, the solution conformation of the A ring of vitamin D3 and its analogs has been studied by application of the Karplus relation to the observed coupling constants. The A-ring conformations of vitamins D3, D2, and 25-hydroxyvitamin D3 were found to be solvent dependent, with a clear preference for an equatorial hydroxyl group in polar solvents such as methanol and dimethyl sulfoxide. Conversion of the hydroxyl group to an acetate did not affect solution conformation appreciably, but the corresponding t-butyl-dimethylsilyl ether derivative of vitamin D3 showed a strong preference for the 3 beta-equatorial conformer. The A-ring conformation of the active hormone, 1,25-dihydroxyvitamin D3, which has two hydroxyl groups competing for the equatorial position, was found not to be solvent-dependent.  相似文献   

11.
Ten azo compounds including azo-resveratrol (5) and azo-oxyresveratrol (9) were synthesized using a modified Curtius rearrangement and diazotization followed by coupling reactions with various phenolic analogs. All synthesized compounds were evaluated for their mushroom tyrosinase inhibitory activity. Compounds 4 and 5 exhibited high tyrosinase inhibitory activity (56.25% and 72.75% at 50 μM, respectively). The results of mushroom tyrosinase inhibition assays indicate that the 4-hydroxyphenyl moiety is essential for high inhibition and that 3,5-dihydroxyphenyl and 3,5-dimethoxyphenyl derivatives are better for tyrosinase inhibition than 2,5-dimethoxyphenyl derivatives. Particularly, introduction of hydroxyl or methoxy group into the 4-hydroxyphenyl moiety diminished or significantly reduced mushroom tryosinase inhibition. Among the synthesized azo compounds, azo-resveratrol (5) showed the most potent mushroom tyrosinase inhibition with an IC50 value of IC50 = 36.28 ± 0.72 μM, comparable to that of resveratrol, a well-known tyrosinase inhibitor.  相似文献   

12.
We describe the synthesis of 26 compounds, small polycerasoidol analogs, that are Lipinski’s rule-of-five compliant. In order to confirm key structural features to activate PPARα and/or PPARγ, we have adopted structural modifications in the following parts: (i) the benzopyran core (hydrophobic nucleus) by benzopyran-4-one, dihydrobenzopyran or benzopyran-4-ol; (ii) the side chain at 2-position by shortening to C3, C4 and C5-carbons versus C-9-carbons of polycerasoidol; (iii) the carboxylic group (polar head) by oxygenated groups (hydroxyl, acetoxy, epoxide, ester, aldehyde) or non-oxygenated motifs (allyl and alkyl). Benzopyran-4-ones 6, 12, 13 and 17 as well as dihydrobenzopyrans 22, 24 and 25 were able to activate hPPARα, whereas benzopyran-4-one (7) with C5-carbons in the side chain exhibited hPPARγ agonism. According to our previous docking studies, SAR confirm that the hydrophobic nucleus (benzopyran-4-one or dihydrobenzopyran) is essential to activate PPARα and/or PPARγ, and the flexible linker (side alkyl chain) should containg at least C5-carbon atoms to activate PPARγ. By contrast, the polar head (“carboxylic group”) tolerated several oxygenated groups but also non-oxygenated motifs. Taking into account these key structural features, small polycerasoidol analogs might provide potential active molecules useful in the treatment of dyslipidemia and/or type 2 diabetes.  相似文献   

13.
We designed and synthesized alkylating conjugates 57 and their partner N-methylpyrrole-N-methylimidazole (PI) polyamides 8, 9. The DNA alkylating activities of conjugates 57 were evaluated by high-resolution denaturing polyacrylamide gel electrophoresis with a 219 base pair (bp) DNA fragment containing the human telomere repeat sequence. Conjugate 5 efficiently alkylated the sequence, 5′-GGTTAGGGTTA-3′, in the presence of partner PI polyamide 8 or distamycin A (Dist). In contrast, the heterodimer system of 5 with 9 showed very weak alkylating activity. Accordingly, this heterotrimeric system of 5 with two short partners is an expedient way to attain improved precision and extension of the recognition of DNA sequences.  相似文献   

14.
Macrolide (R)-de-O-methyllasiodiplodin (1), discovered to be a potent nonsteroidal antagonist of the mineralocorticoid receptor (MR), was synthesized via an efficient method and evaluated for MR antagonistic activity together with its analogs. Among all the tested compounds, compounds 18a, 18b and 18c, exhibited more potent antagonistic activity against MR with IC50 values ranging from 0.58 to 1.11 μM. Generally, it was obviously demonstrated that acetylation at phenolic hydroxyl groups and the ring size in analogs of 1 were very important for MR antagonist activity.  相似文献   

15.
We investigated sequence-specific DNA alkylation using conjugates between the N-methylpyrrole (Py)-N-methylimidazole (Im) polyamide and the DNA alkylating agent, chlorambucil, or 1-(chloromethyl)-5-hydroxy-1,2-dihydro-3H-benz[e]indole (seco-CBI). Polyamide–chlorambucil conjugates 14 differed in the position at which the DNA alkylating chlorambucil moiety was bound to the Py–Im polyamide. High-resolution denaturing polyacrylamide gel electrophoresis (PAGE) revealed that chlorambucil conjugates 14 alkylated DNA at the sequences recognized by the Py–Im polyamide core moiety. Reactivity and sequence specificity were greatly affected by the conjugation position, which reflects the geometry of the alkylating agent in the DNA minor groove. Polyamide–seco-CBI conjugate 5 was synthesized to compare the efficacy of chlorambucil with that of seco-CBI as an alkylating moiety for Py–Im polyamides. Denaturing PAGE analysis revealed that DNA alkylation activity of polyamide–seco-CBI conjugate 5 was similar to that of polyamide–chlorambucil conjugates 1 and 2. In contrast, the cytotoxicity of conjugate 5 was superior to that of conjugates 14. These results suggest that the seco-CBI conjugate was distinctly active in cells compared to the chlorambucil conjugates. These results may contribute to the development of more specific and active DNA alkylating agents.  相似文献   

16.
Prepared from a commercial prostaglandin building block, novel vitamin D3 analogs with a contracted five-membered A-ring were designed and synthesized to mimic the A-ring diol structure of the natural hormone 1alpha,25-dihydroxyvitamin D3. Prepared from commercial 1,4-cyclohexanedione, a structurally simplified analog was designed and synthesized in which a suitably oriented primary allylic hydroxyl group at the C-2 position might be a surrogate for the biologically important 1alpha-OH in the natural hormone.  相似文献   

17.
Four structurally novel stereoisomeric analogues of 1,25-dihydroxyvitamin D3 (3ad) bearing a spiro-oxetane fused at the C2 position of the A-ring have been designed and synthesised in a convergent manner. The requisite A-ring enyne precursors (13a,b) for the vitamin D analogues (3a,b) and (3c,d), respectively, were synthesised from pentaerythritol according to an eleven-step procedure. Preliminary biological evaluation of the analogues using the bovine thymus vitamin D receptor (VDR) suggested that the incorporation of the spiro-oxetane moiety instead of a gem-dimethyl group at the C2 position had a beneficial effect on the VDR affinity.  相似文献   

18.
Twenty-seven natural product-like polyprenylated phenols and quinones were synthesized and their neuroprotective activity was tested using human monoamine oxidase B (MAO-B) and SH-SY5Y cells. Eight compounds inhibited MAO-B (IC50 values < 25 μM) and the inhibition mode and molecular docking of two (8c and 16c) were investigated. Compounds inhibiting MAO-B activity were additionally tested for their ability to protect SH-SY5Y cells from peroxide injury. Three derivatives (3c, 8c and 16c) exhibited both MAO-B inhibitory and neuroprotective activity. A structure activity-relationship study showed that a phenolic hydroxyl group and a longer side chain are important for both activities.  相似文献   

19.
A series of N-acyl derivatives of tyramine, tryptamine, and serotonin were synthesized and tested on anti-melanogenic activity. The serotonin derivatives such as N-caffeoylserotonin (3) and N-protocatechuoylserotonin (9) were inhibitory to tyrosinase from mouse B16 and human HMV-II melanoma cells, while the corresponding derivatives of tryptamine and 5-methoxytryptamine were almost inactive or less active than the serotonin derivatives. The inhibitory activity of the serotonin derivatives increased with increasing number of phenolic hydroxyl groups in the acyl moiety. Melanin formation in the culture of B16 cells was suppressed by 3 and 9 with no cytotoxicity in the concentration range tested (IC50 = 15, 3 and 111 μM for 3, 9, and kojic acid, respectively). Thus the N-acylserotonin derivatives having a dihydroxyphenyl group are potential anti-melanogenic agents. Their inhibition of tyrosinase is primarily performed through the 5-hydroxyindole moiety and further strengthened by the phenolic hydroxyl groups in the acyl moiety.  相似文献   

20.
We designed and synthesized conjugates between pyrrole–imidazole polyamides and seco-CBI that alkylate within the coding regions of the histone H4 genes. DNA alkylating activity on the histone H4 fragment and cellular effects against K562 chronic myelogenous leukemia cells were investigated. One of the conjugates, 5-CBI, showed strong DNA alkylation activity and good sequence specificity on a histone H4 gene fragment. K562 cells treated with 5-CBI down-regulated the histone H4 gene and induced apoptosis efficiently. Global gene expression data revealed that a number of histone H4 genes were down-regulated by 5-CBI treatment. These results suggest that sequence-specific DNA alkylating agents may have the potential of targeting specific genes for cancer chemotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号