首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Drug efflux pumps confer multidrug resistance to dangerous pathogens which makes these pumps important drug targets. We have synthesised a novel series of compounds based on a 2-naphthamide pharmacore aimed at inhibiting the efflux pumps from Gram-negative bacteria. The archeatypical transporter AcrB from Escherichia coli was used as model efflux pump as AcrB is widely conserved throughout Gram-negative organisms. The compounds were tested for their antibacterial action, ability to potentiate the action of antibiotics and for their ability to inhibit Nile Red efflux by AcrB. None of the compounds were antimicrobial against E. coli wild type cells. Most of the compounds were able to inhibit Nile Red efflux indicating that they are substrates of the AcrB efflux pump. Three compounds were able to synergise with antibiotics and reverse resistance in the resistant phenotype. Compound A3, 4-(isopentyloxy)-2-naphthamide, reduced the MICs of erythromycin and chloramphenicol to the MIC levels of the drug sensitive strain that lacks an efflux pump. A3 had no effect on the MIC of the non-substrate rifampicin indicating that this compound acts specifically through the AcrB efflux pump. A3 also does not act through non-specific mechanisms such as outer membrane or inner membrane permeabilisation and is not cytotoxic against mammalian cell lines. Therefore, we have designed and synthesised a novel chemical compound with great potential to further optimisation as inhibitor of drug efflux pumps.  相似文献   

2.
Humans play little role in the epidemiology of Escherichia coli O157:H7, a commensal bacterium of cattle. Why then does E. coli O157:H7 code for virulence determinants, like the Shiga toxins (Stxs), responsible for the morbidity and mortality of colonized humans? One possibility is that the virulence of these bacteria to humans is coincidental and these virulence factors evolved for and are maintained for other roles they play in the ecology of these bacteria. Here, we test the hypothesis that the carriage of the Stx-encoding prophage of E. coli O157:H7 increases the rate of survival of E. coli in the presence of grazing protozoa, Tetrahymena pyriformis. In the presence but not the absence of Tetrahymena, the carriage of the Stx-encoding prophage considerably augments the fitness of E. coli K-12 as well as clinical isolates of E. coli O157 by increasing the rate of survival of the bacteria in the food vacuoles of these ciliates. Grazing protozoa in the environment or natural host are likely to play a significant role in the ecology and maintenance of the Stx-encoding prophage of E. coli O157:H7 and may well contribute to the evolution of the virulence of these bacteria to colonize humans.  相似文献   

3.
The acrS regulatory gene is located upstream of the acrEF multidrug efflux system genes. However, the roles of AcrS in regulation of drug efflux pumps have not been clearly understood. Here we show that AcrS represses other multidrug efflux genes, acrAB, which encode a major efflux system in Escherichia coli.  相似文献   

4.
In the present study, the ability of bovine lactoferrin hydrolysate (LfH) to disrupt the cytoplasmic membrane of Escherichia coli O157:H7 was investigated. Lactoferrin and LfH antimicrobial activities were compared against E. coli O157:H7 and E. coli O157:H7 spheroplasts. The effect of LfH on the cytoplasmic membrane of E. coli O157:H7 cells was determined by evaluating potassium efflux (K+), dissipation of ATP and membrane potential (ΔΨ). LfH produced a rapid efflux of potassium ions, a decrease in intracellular levels of ATP coupled with a substantial increase in extracellular ATP levels and a complete dissipation of the ΔΨ. The results suggest that LfH causes a collapse of the membrane integrity by pore formation in the inner membrane, leading to the death of the cell. Moreover, the mechanism of action of LfH on E. coli O157:H7 appears to involve an interference with the inner membrane integrity based on experiments using E. coli O157:H7 spheroplasts.  相似文献   

5.
针对大肠杆菌O157:H7(Escherichia coli O157:H7,E.coli O157:H7)传统检测方法检测周期长的问题,建立了肉类中的E.coli O157:H7的改良环介导等温扩增(LAMP)快速检测方法。以E.coli O157:H7的O157特异性抗原rfbE基因、鞭毛H7特异性抗原fliC基因序列作为靶序列,分别设计2套增加了环引物的改良LAMP引物序列,单管同时检测,通过肉眼观察白色沉淀,判断检测结果。采用36株细菌验证了该改良LAMP引物的特异性。热裂解法提取的DNA经改良LAMP体系扩增20 min,检测E.coli O157:H7的灵敏度为1.4 CFU/mL,人工污染肉中的E.coli O157:H7检出限为1.8 CFU/g。137份实样中,检测出1份E.coli O157:H7假阳性,与行业标准SNT0973-2000符合率达到99.3%。  相似文献   

6.
7.
The ecology of Escherichia coli O157:H7 is not well understood. The aims of this study were to determine the prevalence of and characterize E. coli O157:H7 associated with houseflies (HF). Musca domestica L. HF (n = 3,440) were collected from two sites on a cattle farm over a 4-month period and processed individually for E. coli O157:H7 isolation and quantification. The prevalence of E. coli O157:H7 was 2.9 and 1.4% in HF collected from feed bunks and a cattle feed storage shed, respectively. E. coli O157:H7 counts ranged from 3.0 × 101 to 1.5 × 105 CFU among the positive HF. PCR analysis of the E. coli O157:H7 isolates revealed that 90.4, 99.2, 99.2, and 100% of them (n = 125) possessed the stx1, stx2, eaeA, and fliC genes, respectively. Large populations of HF on cattle farms may play a role in the dissemination of E. coli O157:H7 among animals and to the surrounding environment.  相似文献   

8.
Escherichia coli O157:H7 (E. coli O157:H7) is recognized as a hazardous microorganism in the environment and for public health. The E. coli O157:H7 survival dynamics were investigated in 12 representative soils from Jiangsu Province, where the largest E. coli O157:H7 infection in China occurred. It was observed that E. coli O157:H7 declined rapidly in acidic soils (pH, 4.57 – 5.14) but slowly in neutral soils (pH, 6.51 – 7.39). The survival dynamics were well described by the Weibull model, with the calculated td value (survival time of the culturable E. coli O157:H7 needed to reach the detection limit of 100 CFU g−1) from 4.57 days in an acidic soil (pH, 4.57) to 34.34 days in a neutral soil (pH, 6.77). Stepwise multiple regression analysis indicated that soil pH and soil organic carbon favored E. coli O157:H7 survival, while a high initial ratio of Gram-negative bacteria phospholipid fatty acids (PLFAs) to Gram-positive bacteria PLFAs, and high content of exchangeable potassium inhibited E. coli O157:H7 survival. Principal component analysis clearly showed that the survival profiles in soils with high pH were different from those with low pH.  相似文献   

9.
The survival of Escherichia coli O157:H7 in soils can contaminate vegetables, fruits, drinking water, etc. However, data on the impact of E. coli O157:H7 on soil microbial communities are limited. In this study, we monitored the changes in the indigenous microbial community by using the phospholipid fatty acid (PLFA) method to investigate the interaction of the soil microbial community with E. coli O157:H7 in soils. Simple correlation analysis showed that the survival of E. coli O157:H7 in the test soils was negatively correlated with the ratio of Gram-negative (G) to Gram-positive (G+) bacterial PLFAs (G/G+ ratio). In particular, levels of 14 PLFAs were negatively correlated with the survival time of E. coli O157:H7. The contents of actinomycetous and fungal PLFAs in the test soils declined significantly (P, <0.05) after 25 days of incubation with E. coli O157:H7. The G/G+ ratio declined slightly, while the ratio of bacterial to fungal PLFAs (B/F ratio) and the ratio of normal saturated PLFAs to monounsaturated PLFAs (S/M ratio) increased, after E. coli O157:H7 inoculation. Principal component analysis results further indicated that invasion by E. coli O157:H7 had some effects on the soil microbial community. Our data revealed that the toxicity of E. coli O157:H7 presents not only in its pathogenicity but also in its effect on soil microecology. Hence, close attention should be paid to the survival of E. coli O157:H7 and its potential for contaminating soils.  相似文献   

10.
Prophages make up 12% of the enterohemorrhagic Escherichia coli genome and play prominent roles in the evolution and virulence of this food-borne pathogen. Acquisition and loss of and rearrangements within prophage regions are the primary causes of differences in pulsed-field gel electrophoresis (PFGE) patterns among strains of E. coli O157:H7. Sp11 and Sp12 are two tandemly integrated and putatively defective prophages carried by E. coli O157:H7 strain Sakai. In this study, we identified 3 classes of deletions that occur within the Sp11-Sp12 region, at a frequency of ca. 7.74 × 10−4. One deletion resulted in a precise excision of Sp11, and the other two spanned the junction of Sp11 and Sp12. All deletions resulted in shifts in the XbaI fragment pattern observed by PFGE. We sequenced the inducible prophage pool of Sakai but did not identify any mature phage particles corresponding to either Sp11 or Sp12. Deletions containing pchB and psrC, which are Sp11-carried genes encoding proteins known or suspected to regulate type III secretion, did not affect the secretion levels of the EspA or EspB effector. Alignment of the Sp11-Sp12 DNA sequence with its corresponding regions in other E. coli O157:H7 and O55:H7 strains suggested that homologous recombination rather than integrase-mediated excision is the mechanism behind these deletions. Therefore, this study provides a mechanism behind the previously observed genetic instability of this genomic region of E. coli O157:H7.  相似文献   

11.
Resistance of the pathogenic yeast Candida albicans to the antifungal agent fluconazole is often caused by the overexpression of genes that encode multidrug efflux pumps (CDR1, CDR2, or MDR1). We have undertaken a proteomic approach to gain further insight into the regulatory network controlling efflux pump expression and drug resistance in C. albicans. Three pairs of matched fluconazole-susceptible and resistant clinical C. albicans isolates, in which drug resistance correlated with stable activation of MDR1 or CDR1/2, were analyzed for differences in their protein expression profiles. In two independent, MDR1-overexpressing, strains, additional up-regulated proteins were identified, which are encoded by the YPR127 gene and several members of the IFD (YPL088) gene family. All are putative aldo-keto reductases of unknown function. These proteins were not up-regulated in a fluconazole-resistant strain that overexpressed CDR1 and CDR2 but not MDR1, indicating that expression of the various efflux pumps of C. albicans is controlled by different regulatory networks. To investigate the possible role of YPR127 in the resistance phenotype of the clinical isolates, we constitutively overexpressed the gene in a C. albicans laboratory strain. In addition, the gene was deleted in a C. albicans laboratory strain and in one of the drug-resistant clinical isolates in which it was overexpressed. Neither forced overexpression nor deletion of YPR127 affected the susceptibility of the strains to drugs and other toxic substances, suggesting that the regulatory networks which control the expression of efflux pumps in C. albicans also control genes involved in cellular functions not related to drug resistance.Communicated by D. Y. Thomas  相似文献   

12.
Multidrug efflux pumps play an important role as a self-defense system in bacteria. Bacterial multidrug efflux pumps are classified into five families based on structure and coupling energy: resistance−nodulation−cell division (RND), small multidrug resistance (SMR), major facilitator (MF), ATP binding cassette (ABC), and multidrug and toxic compounds extrusion (MATE). We cloned a gene encoding a MATE-type multidrug efflux pump from Streptococcus pneumoniae R6, and designated it pdrM. PdrM showed sequence similarity with NorM from Vibrio parahaemolyticus, YdhE from Escherichia coli, and other bacterial MATE-type multidrug efflux pumps. Heterologous expression of PdrM let to elevated resistance to several antibacterial agents, norfloxacin, acriflavine, and 4′,6-diamidino-2-phenylindole (DAPI) in E. coli KAM32 cells. PdrM effluxes acriflavine and DAPI in a Na+- or Li+-dependent manner. Moreover, Na+ efflux via PdrM was observed when acriflavine was added to Na+-loaded cells expressing pdrM. Therefore, we conclude that PdrM is a Na+/drug antiporter in S. pneumoniae. In addition to pdrM, we found another two genes, spr1756 and spr1877,that met the criteria of MATE-type by searching the S. pneumoniae genome database. However, cloned spr1756 and spr1877 did not elevate the MIC of any of the investigated drugs. mRNA expression of spr1756, spr1877, and pdrM was detected in S. pneumoniae R6 under laboratory growth conditions. Therefore, spr1756 and spr1877 are supposed to play physiological roles in this growth condition, but they may be unrelated to drug resistance.  相似文献   

13.

Background

Enterotoxigenic Escherichia coli (ETEC) are a major economic threat to pig production globally, with serogroups O8, O9, O45, O101, O138, O139, O141, O149 and O157 implicated as the leading diarrhoeal pathogens affecting pigs below four weeks of age. A multiple antimicrobial resistant ETEC O157 (O157 SvETEC) representative of O157 isolates from a pig farm in New South Wales, Australia that experienced repeated bouts of pre- and post-weaning diarrhoea resulting in multiple fatalities was characterized here. Enterohaemorrhagic E. coli (EHEC) O157:H7 cause both sporadic and widespread outbreaks of foodborne disease, predominantly have a ruminant origin and belong to the ST11 clonal complex. Here, for the first time, we conducted comparative genomic analyses of two epidemiologically-unrelated porcine, disease-causing ETEC O157; E. coli O157 SvETEC and E. coli O157:K88 734/3, and examined their phylogenetic relationship with EHEC O157:H7.

Results

O157 SvETEC and O157:K88 734/3 belong to a novel sequence type (ST4245) that comprises part of the ST23 complex and are genetically distinct from EHEC O157. Comparative phylogenetic analysis using PhyloSift shows that E. coli O157 SvETEC and E. coli O157:K88 734/3 group into a single clade and are most similar to the extraintestinal avian pathogenic Escherichia coli (APEC) isolate O78 that clusters within the ST23 complex. Genome content was highly similar between E. coli O157 SvETEC, O157:K88 734/3 and APEC O78, with variability predominantly limited to laterally acquired elements, including prophages, plasmids and antimicrobial resistance gene loci. Putative ETEC virulence factors, including the toxins STb and LT and the K88 (F4) adhesin, were conserved between O157 SvETEC and O157:K88 734/3. The O157 SvETEC isolate also encoded the heat stable enterotoxin STa and a second allele of STb, whilst a prophage within O157:K88 734/3 encoded the serum survival gene bor. Both isolates harbor a large repertoire of antibiotic resistance genes but their association with mobile elements remains undetermined.

Conclusions

We present an analysis of the first draft genome sequences of two epidemiologically-unrelated, pathogenic ETEC O157. E. coli O157 SvETEC and E. coli O157:K88 734/3 belong to the ST23 complex and are phylogenetically distinct to EHEC O157 lineages that reside within the ST11 complex.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1382-y) contains supplementary material, which is available to authorized users.  相似文献   

14.
EbrAB in Bacillus subtilis belongs to a novel small multidrug resistance (SMR) family of multidrug efflux pumps. EmrE in Escherichia coli, a representative of SMR, functions as a homo-oligomer in the membrane. On the other hand, EbrAB requires a hetero-oligomeric configuration consisting of two polypeptides, EbrA and EbrB. Although both polypeptides have a high sequence similarity, expression of either single polypeptide does not confer the multidrug-resistance. We performed mutation studies on EbrA and B to determine why EbrAB requires the hetero-oligomerization. Mutants of EbrA and B lacking both the hydrophilic loops and the C-terminus regions conferred the multidrug-resistance solely by each protein. This suggests that the hydrophilic loops and the C-terminus regions constrain them to their respective conformations upon the formation of the functional hetero-oligomer.  相似文献   

15.
Abstract

The increasing number of multidrug-resistant pathogenic microorganisms is a serious public health issue. Among the multitude of mechanisms that lead to multidrug resistance, the active extrusion of toxic compounds, mediated by MDR efflux pumps, plays an important role. In our study we analyzed the inhibitory capability of 26 synthesized zosuquidar derivatives on three ABC-type MDR efflux pumps, namely Saccharomyces cerevisiae Pdr5 as well as Lactococcus lactis LmrA and LmrCD. For Pdr5, five compounds could be identified that inhibited rhodamine 6G transport more efficiently than zosuquidar. One of these is a compound with a new catechol acetal structure that might represent a new lead compound. Furthermore, the determination of IC50 values for rhodamine 6G transport of Pdr5 with representative compounds reveals values between 0.3 and 0.9 μM. Thus the identified compounds are among the most potent inhibitors known for Pdr5. For the ABC-type efflux pumps LmrA and LmrCD from L. lactis, seven and three compounds, which inhibit the transport activity more than the lead compound zosuquidar, were found. Interestingly, transport inhibition for LmrCD was very specific, with a drastic reduction by one compound while its diastereomers showed hardly an effect. Thus, the present study reveals new potent inhibitors for the ABC-type MDR efflux pumps studied with the inhibitors of Pdr5 and LmrCD being of particular interest as these proteins are well known model systems for their homologs in pathogenic fungi and Gram-positive bacteria.  相似文献   

16.
Inhibitors of drug efflux pumps have great potential as pharmacological agents that restore the drug susceptibility of multidrug resistant bacterial pathogens. Most attention has been focused on the discovery of small molecules that inhibit the resistance nodulation division (RND) family drug efflux pumps in Gram-negative bacteria. The prototypical inhibitor of RND-family efflux pumps in Gram-negative bacteria is MC-207,110 (Phe-Arg-β-naphthylamide), a C-capped dipeptide. Here, we report that C-capped dipeptides inhibit two chloramphenicol-specific efflux pumps in Streptomyces coelicolor, a Gram-positive bacterium that is a relative of the human pathogen Mycobacterium tuberculosis. Diversity-oriented synthesis of a library of structurally related C-capped dipeptides via an Ugi four component reaction and screening of the resulting compounds resulted in the discovery of a compound that is threefold more potent as a suppressor of chloramphenicol resistance in S. coelicolor than MC-207,110. Since chloramphenicol resistance in S. coelicolor is mediated by major facilitator superfamily drug efflux pumps, our findings provide the first evidence that C-capped dipeptides can inhibit drug efflux pumps outside of the RND superfamily.  相似文献   

17.
A unique open reading frame (ORF) Z3276 was identified as a specific genetic marker for E. coli O157:H7. A qPCR assay was developed for detection of E. coli O157:H7 by targeting ORF Z3276. With this assay, we can detect as low as a few copies of the genome of DNA of E. coli O157:H7. The sensitivity and specificity of the assay were confirmed by intensive validation tests with a large number of E. coli O157:H7 strains (n = 369) and non-O157 strains (n = 112). Furthermore, we have combined propidium monoazide (PMA) procedure with the newly developed qPCR protocol for selective detection of live cells from dead cells. Amplification of DNA from PMA-treated dead cells was almost completely inhibited in contrast to virtually unaffected amplification of DNA from PMA-treated live cells. Additionally, the protocol has been modified and adapted to a 96-well plate format for an easy and consistent handling of a large number of samples. This method is expected to have an impact on accurate microbiological and epidemiological monitoring of food safety and environmental source.  相似文献   

18.
Studies were conducted to evaluate fecal shedding of Escherichia coli O157:H7 in a small group of inoculated deer, determine the prevalence of the bacterium in free-ranging white-tailed deer, and elucidate relationships between E. coli O157:H7 in wild deer and domestic cattle at the same site. Six young, white-tailed deer were orally administered 108 CFU of E. coli O157:H7. Inoculated deer were shedding E. coli O157:H7 by 1 day postinoculation (DPI) and continued to shed decreasing numbers of the bacteria throughout the 26-day trial. Horizontal transmission to an uninoculated deer was demonstrated. Although E. coli O157:H7 bacteria were recovered from the gastrointestinal tracts of deer necropsied from 4 to 26 DPI, attaching and effacing lesions were not apparent in any deer. Results are similar to those of inoculation studies in calves and sheep. In field studies, E. coli O157 was not detected in 310 fresh deer fecal samples collected from the ground. It was detected in feces, but not in meat, from 3 of 469 free-ranging deer in 1997. In 1998, E. coli O157 was not detected in 140 deer at the single positive site found in 1997; however, it was recovered from 13 of 305 dairy and beef cattle at the same location. Isolates of E. coli O157:H7 from deer and cattle at this site differed with respect to pulsed-field gel electrophoresis patterns and genes encoding Shiga toxins. The low overall prevalence of E. coli O157:H7 and the identification of only one site with positive deer suggest that wild deer are not a major reservoir of E. coli O157:H7 in the southeastern United States. However, there may be individual locations where deer sporadically harbor the bacterium, and venison should be handled with the same precautions recommended for beef, pork, and poultry.  相似文献   

19.
Surface water and groundwater are continuously used as sources of drinking water in many metropolitan areas of the United States. The quality of water from these sources may be reduced due to increases in contaminants such as Escherichia coli from urban and agricultural runoffs. In this study, a multiplex fluorogenic PCR assay was used to quantify E. coli O157:H7 in soil, manure, cow and calf feces, and dairy wastewater in an artificial wetland. Primers and probes were designed to amplify and quantify the Shiga-like toxin 1 (stx1) and 2 (stx2) genes and the intimin (eae) gene of E. coli O157:H7 in a single reaction. Primer specificity was confirmed with DNA from 33 E. coli O157:H7 and related strains with and without the three genes. A direct correlation was determined between the fluorescence threshold cycle (CT) and the starting quantity of E. coli O157:H7 DNA. A similar correlation was observed between the CT and number of CFU per milliliter used in the PCR assay. A detection limit of 7.9 × 10−5 pg of E. coli O157:H7 DNA ml−1 equivalent to approximately 6.4 × 103 CFU of E. coli O157:H7 ml−1 based on plate counts was determined. Quantification of E. coli O157:H7 in soil, manure, feces, and wastewater was possible when cell numbers were ≥3.5 × 104 CFU g−1. E. coli O157:H7 levels detected in wetland samples decreased by about 2 logs between wetland influents and effluents. The detection limit of the assay in soil was improved to less than 10 CFU g−1 with a 16-h enrichment. These results indicate that the developed PCR assay is suitable for quantitative determination of E. coli O157:H7 in environmental samples and represents a considerable advancement in pathogen quantification in different ecosystems.  相似文献   

20.
A multiplex PCR procedure that detects six major virulence genes, fliC, stx1, stx2, eae, rfbE, and hlyA, in Escherichia coli O157:H7 was developed. Analyses of the available sequences of the six major virulence genes and the published primers allowed us to develop the six-gene, multiplex PCR protocol that maintained the specificity of each primer pair. The resulting six bands for fliC, stx1, stx2, eae, rfbE, and hlyA were even and distinct with product sizes of 949, 655, 477, 375, 296, and 199 bp, respectively. The procedure was validated with a total of 221 E. coli strains that included 4 ATCC, 84 cattle, and 57 human E. coli O157:H7 strains as well as 76 non-O157 cattle and human E. coli strains. The results of all 221 strains were similar to the results generated by established multiplex PCR methods that involved two separate reactions to detect five virulence genes (stx1, stx2, eae, fliC, and hlyA). Specificity of the O antigen was indicated by amplification of only O157, and not O25, O26, O55, O78, O103, O111, O127, and O145 E. coli serotypes. Sensitivity tests showed that the procedure amplified genes from a fecal sample spiked with a minimum of 104 CFU/g (10 cells/reaction) of E. coli O157. After a 6-h enrichment of E. coli O157-spiked samples, a sensitivity level of 10 CFU/g was achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号