首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anti-melanogenesis effects of silymarin from milk thistle have been reported recently, but detailed tyrosinase inhibition properties of individual components have not been investigated. This study purported to substantiate tyrosinase inhibition and its mechanism based on a single metabolite. The responsible components for tyrosinase inhibition of target source were found out as flavonolignans which consist of isosilybin A (1), isosilybin B (2), silydianin (3), 2,3-dihydrosilychristin (4), silychristin A (5), silychristin B (6) and silybin (7), respectively. The isolated flavonolignans (17) inhibited both monophenolase (IC50 = 1.7–7.6 µM) and diphenolase (IC50 = 12.1–44.9 µM) of tyrosinase significantly. Their inhibitions were 10-fold effective in comparison with their mother skeletons (810). Inhibitory functions were also proved by HPLC analysis using N-acetyl-l-tyrosine as substrate. The predominant formation of Emet·I was confirmed from a long prolongation of lag time and a decrease of the static state activity of the enzyme. All tested compounds had a significant binding affinity to tyrosinase with KSV values of 0.06–0.27 × 104 L·mol−1, which are well correlated with IC50s. In kinetic study, all flavonolignan (17) were mixed type I (KI < KIS) inhibitors, whereas their mother skeletons (810) were competitive ones. The UPLC-ESI-TOF/MS analysis showed that the isolated inhibitors are the most abundant metabolites in the target plant.  相似文献   

2.
A phytochemical study focusing on the secoiridoid components in the fruits of Ligustrum lucidum was carried out, which finally led to the isolation of nine secoiridoid glycosides (19) together with two secoiridoids (10, 11). The structures of all compounds were established mainly by NMR and MS experiments as well as the necessary chemical evidence, of which 1, 2, 4 (ligulucisides A–C), 10 and 11 (liguluciridoids A and B) were identified as new secoiridoid analogues. An in vitro antiviral bioassay indicated that 1, 4, 6, and 10 displayed the inhibitory activities against influenza A virus with the IC50 values of 16.5, 12.5, 13.1, and 18.5?μM, respectively, which were better than the positive control Ribavirin (IC50 22.6?μM)..  相似文献   

3.
Substituted diphenyl sulfones (10an) were synthesised, and the structures were confirmed by NMR, LC–MS and X-ray crystallography. Their antagonistic activities towards 5-HT6 receptor were assessed in a cell-based functional assay. Diphenyl sulfone 10a, in spite of being the smallest and simplest known sulfonyl-containing 5-HT6R antagonist, showed a strong potency (Ki = 1.6 μM). Its derivative with a methylamine substituent, 10g (N-methyl-2-(phenylsulfonyl)aniline), was ~66-times as active as diphenyl sulfone (Ki = 24.3 nM). Addition of a piperazinyl moiety in the para-position relative to the sulfonyl group in compound 10m (N-methyl-2-(phenylsulfonyl)-5-piperazin-1-ylaniline) led to a further 150-fold increase in potency (Ki = 0.16 nM) to block the serotonin-induced response of HEK-293 cells that were stably transfected with the human recombinant 5-HT6 receptor.  相似文献   

4.
Trimellitimides 621 were prepared and investigated in vivo for anti-inflammatory and ulcerogenic effects and in vitro for cytotoxicity. They were subjected to in vitro cyclooxygenase (COX-1/2) and carbonic anhydrase inhibition protocols. Compounds 611 and 18 exhibited anti-inflammatory activities and had median effective doses (ED50) of 34.3–49.8 mg kg−1 and 63.6–86.6% edema inhibition relative to the reference drug celecoxib (ED50: 33.9 mg kg−1 and 85.2% edema inhibition). Compounds 611 and 18 were weakly cytotoxic at 10 μM against 59 cell lines compared with the reference standard 5-fluorouracil (5-FU). Compounds 611 had optimal selectivity against COX-2. The selectivity index (SI) range was >200–490 and was comparable to that for celecoxib [COX-2 (SI) > 416.7]. In contrast, compounds 12, 13, and 1618 were nonselective COX inhibitors with a selectivity index range of 0.92–0.25. The carbonic anhydrase inhibition assay showed that sulfonamide incorporating trimellitimides 611 inhibited the cytosolic isoforms hCA I and hCA II, and tumor-associated isoform hCA IX. They were relatively more susceptible to inhibition by compounds 8, 9, and 11. The KI ranges were 54.1–81.9 nM for hCA I, 25.9–55.1 nM for hCA II, and 46.0–348.3 nM for hCA IX. © 2018 Elsevier Science. All rights reserved.  相似文献   

5.
Two new thienylheptatrienamides (1, 5) and one new neo-lignan (12), together with thirteen known compounds (2, 3, 4, 611, 1316) were isolated from the roots of Otanthus maritimus. The structures of the new compounds were elucidated on the basis of extensive 1D and 2D NMR experiments as well as high resolution mass spectrometry. All the isolated amides (110), the known pontica epoxide (11) and the new neo-lignan (12) were evaluated for their binding affinity to the CB1 and CB2 as well as to the μ and δ opioid receptors. Some alkylamides showed moderately high binding affinity for CB2 receptors and 1-[(2E,4E,8Z)-tetradecatrienoyl]piperidine (10) resulted the most active one with a Ki value of 160 nM. As far as we know, this is the first example of a tertiary alkylamide that binds CB2 receptors with significant potency. Compounds that showed the highest affinity for cannabinoid receptors (68, 10) were much less potent against opioid receptors. Primary structure–activity relationship is discussed. Docking experiments were carried out with the aim to understand the key interactions of the most active compounds with CB2 receptor.  相似文献   

6.
A series of acetophenone derivatives (10a10i, 11, 12a12g, 13a13g, 14a14d and 15a15l) were designed, synthesized and evaluated for antifungal activities in vitro and in vivo. The antifungal activities of 53 compounds were tested against several plant pathogens, and their structure–activity relationship was summarized. Compounds 10a10f displayed better antifungal effects than two reference fungicides. Interestingly, the most potent compound 10d exhibited antifungal properties against Cytospora sp., Botrytis cinerea, Magnaporthe grisea, with IC50 values of 6.0–22.6?µg/mL, especially Cytospora sp. (IC50?=?6.0?µg/mL). In the in vivo antifungal assays, 10d displayed the significant protective efficacy of 55.3% to Botrytis cinerea and 73.1% to Cytospora sp. The findings indicated that 10d may act as a potential pesticide lead compound that merits further investigation.  相似文献   

7.
Six new dammarane-type triterpenoid saponins, notoginsenosides SFt5–SFt10 (16) were isolated from the processed leaves of Panax notoginseng (Burk.) F.H.Chen (Araliaceae), together with eight known notoginsenosides (714), fourteen known ginsenosides (1528), two known vinaginsenosides (2930), and one known gypenoside (31). Their structures were established by detailed spectroscopic analysis (NMR, UV, IR, HRESI-MS) and acidic hydrolysis. Four compounds notoginsenoside SFt1 (7), ginsenosides Rg5 (17), C-Mc (23) and 20(R)–Rg3 (25) have significant protective effects against L-glutamate-induced SH–SY5Y nerve injury (10 μM).  相似文献   

8.
Four new caged xanthones (14) and two known compounds (5, 6) were isolated from the roots of Cratoxylum cochinchinense, a polyphenol rich plant, collected in China. The structures of the isolated compounds (16) were characterized by obtaining their detailed spectroscopic data. In particular, compounds 1 and 6 were fully identified by X-ray crystallographic data. The isolated compounds (16) were evaluated against protein tyrosine phosphatase 1B (PTP1B), which plays an important role in diabetes, obesity, and cancer. Among these compounds, 3, 4, and 6 displayed significant inhibition with IC50 values of 76.3, 43.2, and 6.6 µM, respectively. A detailed kinetic study was conducted by determining Km, Vmax, and the ratio of Kik and Kiv, which revealed that all the compounds behaved as competitive inhibitors.  相似文献   

9.
《Carbohydrate research》1999,315(1-2):98-105
Syntheses of five ‘direct linked’ C-disaccharides 8a–e were reported. The (Et3SiH/BF3·Et2O) reduction of pyranulose glycoside 1 yielded (6S)- and (6R)-6-(2,3,5-tri-O-benzoyl-β-d-ribofuranosyl)pyran-3(2H,6H)-one (2a and 2b) in a ratio of ca. 2:1 and in 88% combined yield. The absolute stereochemistry of each was determined from its CD spectrum. The reduction of 2a with NaBH4 in methanol afforded two allylic alcohols 6a and 6b in 14 and 73% yield, respectively. The reduction of 2b with NaBH4 afforded 6c and 6d in 30 and 56% yield, respectively. Cis hydroxylation of the double bond in compounds 6a–d with osmium tetroxide gave 7a–e. The stereoisomers 7a–e were separated and their configuration was established by 1H NMR spectroscopy. Debenzoylation of compounds 7a–e with aqueous sodium carbonate produced deprotected C-disaccharides 8a–e.  相似文献   

10.
11.
During the course of a neuraminidase inhibitor screening program on natural products, four new (6, 8, 11, and 12) and eleven known (15, 7, 910, and 1315) pterocarpan derivatives were isolated as active principles from the EtOAc extract of the stem bark of Erythrina abyssinica. Their structures were identified by spectroscopic data analyses. All isolates exhibited significant inhibitory effects on the neuraminidases from Clostridium perfringens and Vibrio cholerae with IC50 values ranging from 1.32 to 77.10 μM and 0.35 to 77.73 μM, respectively. The isolates (13, 58, 10, and 1315), which possessed noncompetitive inhibition modes in kinetic studies, showed stronger activity against C. perfringens neuraminidase (IC50 1.32–19.82 μM) than quercetin (IC50 25.34 μM), which was used as the positive control. In contrast, compounds 4 and 9 behaved as competitive inhibitors and were displayed less effective (IC50 26.39–33.55 μM). Furthermore, calopocarpine, as a neuraminidase inhibitor, produced a decrease of V. cholerae adhesion to the host cell. Overall, these results suggest that neuraminidase inhibitors can be used in the development of new treatments to combat infectious diseases.  相似文献   

12.
Bioassay-guided fractionation and chemical investigation of the extract of Rhus verniciflua bark resulted in the identification of six polyphenols, rhusopolyphenols A–F (16), together with four known compounds including (2R,3S,10S)-7,8,9,13-tetrahydroxy-2-(3,4-dihydroxyphenyl)-2,3-trans-3,4-cis-2,3,10-trihydrobenzopyrano[3,4-c]-2-benzopyran-1-one (7), peapolyphenol C (8), cilicione-b (9) and (αR)-α,3,4,2′,4′-pentahydroxydihydrochalcone (10). The structures of these polyphenols were elucidated by spectroscopic analysis, including 1D and 2D NMR, and HR-ESIMS, and their absolute configurations were further confirmed by a combination of chemical methods and CD data analysis. All isolates were evaluated for their antiproliferative activities against four human tumor cell lines (A549, SK-OV-3, SK-MEL-2, and HCT-15), and compounds 46, 9 and 10 showed antiproliferative activity against the tested cells, with IC50 values of 3.31–18.51 μM. On the basis of the expanded understanding that inflammation is a crucial cause of tumor progression, the anti-inflammatory activities of these compounds were determined by measuring nitric oxide (NO) levels in the medium of murine microglia BV-2 cells. Compounds 5 and 10 significantly inhibited NO production in lipopolysaccharide (LPS)-stimulated murine microglia BV-2 cells with IC50 values of 28.90 and 12.70 μM, respectively.  相似文献   

13.
Chromatography of the ethanol extract of the medicinal fruit Stauntonia hexaphylla resulted in the purification of 26 compounds (126), including two undescribed triterpene saponins 1 and 2 (hexaphylosides A and B). Their structures were confirmed by spectroscopic data, including IR, HR QTOF MS, 1H, 13C NMR, COSY, HMQC, HMBC, and TOCSY, and HPLC sugar analysis after acid hydrolysis. The anti-inflammatory effects of the high-purity constituents (126) on lipopolysaccharide (LPS)-induced RAW264.7 macrophage cells were investigated by screening nitric oxide production. The NO inhibitory activity of compounds 6 and 10 with the IC50 values of 1.33 and 1.10 µM, respectively. The structure-activity relationships (SAR) of the isolated compounds were also analyzed. Furthermore, compounds 6 and 10 inhibited the protein expression inducible nitric oxide synthase (iNOS), and cyclooxygenase (COX)-2 via Western blotting analysis. This showed that compounds 6 and 10 contributed to the anti-inflammatory effects of S. hexaphylla fruit, which could be developed as a natural nutraceutical and functional food ingredient.  相似文献   

14.
Medicago sativa L. is a forage legume plant widely distributed in all continents. Six new triterpenoid saponins, Medicagosides A-F (16) and five known ones (711) were isolated from M. sativa. Their structures were determined via HRESIMS, 1D and 2D NMR analysis. Biologically, all the isolates displayed neuroprotective activities against H2O2-induced damage in SH-SY5Y cells. Among them, compounds 1, 35 and 10 exhibited striking neuroprotective activities at 100 μM, restoring cell viability range from 79.66% to 89.03%, relative to 79.46% (100 μM) of Trolox used as the positive control.  相似文献   

15.
Six new (rubiyunnanins C–H, 16) and five known (711) cyclic hexapeptides were isolated from the roots of Rubia yunnanensis (Franch.) Diels. The structures and stereochemistry of 16 were established by extensive spectroscopic analyses and chemical methods. All compounds (111) not only exhibited cytotoxic activities against a panel of eleven cancer cell lines with IC50 values ranging from 0.001 to 56.24 μM, but also exerted inhibitory activities against nitric oxide (NO) production in LPS and IFN-γ-induced RAW 264.7 murine macrophages with IC50 values ranging from 0.05 to 12.68 μM. Furthermore, this is the first time it is being reported that compounds 2 and 710 significantly inhibited TNF-α-induced NF-κB activation in HEK-293-NF-κB luciferase stable cells with IC50 values of 35.07, 0.03, 1.69, 12.64 and 1.18 μM, respectively.  相似文献   

16.
A three series of thioureas, monothiourea type I (4ag), 1,4-bisthiourea type II (5ah) and 1,3-bisthiourea type III (6ah) were synthesized. Their aromatase inhibitory activities have been evaluated. Interestingly, eight thiourea derivatives (4e, 5f–h, 6d, 6f–h) exhibited the aromatase inhibitory activities with IC50 range of 0.6–10.2 μM. The meta-bisthiourea bearing 4-NO2 group (6f) and 3,5-diCF3 groups (6h) were shown to be the most potent compounds with sub-micromolar IC50 values of 0.8 and 0.6 μM, respectively. Molecular docking also revealed that one of the thiourea moieties of these two compounds could mimic steroidal backbone of the natural androstenedione (ASD) via hydrophobic interactions with enzyme residues (Val370, Leu477, Thr310, and Phe221 for 6f, Val370, Leu477, Ser478, and Ile133 for 6h). This is the first time that the bisthioureas have been reported for their potential to be developed as aromatase inhibitors, in which the 4-NO2 and 3,5-diCF3 analogs have been highlighted as promising candidates.  相似文献   

17.
Dried aerial parts of Tetragonia tetragonoides were extracted with 70% EtOH, and the evaporated residue was successively separated into EtOAc, n-BuOH, and H2O fractions. As a result of repeated SiO2, ODS, and Sephadex LH-20 column chromatography, four new 6-methoxyflavonol glycosides (24, 8) along with four known ones (1, 57) were isolated. Several spectroscopic data led to determination of chemical structures for four new 6-methoxyflavonol glycosides (24, 8) and four known ones, 6-methoxykaempferol 3-O-β-d-glucopyranosyl-(1 → 2)-β-d-glucopyranosyl-7-O-(6‴′-(E)-caffeoyl)-β-d-glucopyranoside (1), 6-methoxyquercetin (5), 6-methoxykaempferol (6), and 6-methoxykaempferol 7-O-β-d-glucopyranoside (7). Methoxyflavonol glycosides 28 also have never been reported from T. tetragonoides in this study. 6-Methoxyflavonols 5 and 6 showed high radical scavenging potential in DPPH and ABTS test. Also, all compounds showed significant anti-inflammatory activities such as reduction of NO and PGE2 formation and suppression of TNF-α, IL-6, IL-1β, iNOS, and COX-2 expression in LPS-stimulated RAW 264.7 macrophages. In general, the aglycones exhibited higher activity than the glycosides. In addition, quantitative analysis of 6-methoxyflavonols in the T. tetragonoides aerial parts extract was conducted through HPLC.  相似文献   

18.
Three new aromatic compounds, identified as 1-(3′,4′-methylenedioxy-phenyl)-10-(3″-hydroxyphenyl)-decane (1), 1-(3′,4′-methylenedioxy-phenyl)-12-(3″-hydroxyphenyl)-dodecane (2), and 1-(3′,4′-methylenedioxy-phenyl)-12-(3″-hydroxyphenyl)-6Z-dodecylene (3), along with six known compounds (4–9) were isolated from the 95% EtOH extract of Homalomena occulta. Their structures were elucidated by chemical and spectral methods Compounds 4–9 were isolated for the first time from this plant. Compounds 1–3 exhibited inhibitory activity against BACE1, with IC50 values of 0.82–1.09 μmol/L.  相似文献   

19.
Five new phenolic glycosides, hedyotosides A–E (15), including a new cyanogenic glycoside (1), along with 10 known compounds (615) were isolated from the whole plants of Hedyotis scandens. The structures of compounds 15 were established by extensive spectroscopic analyses and acid hydrolysis. All the isolated compounds were evaluated for their in vitro antiviral activity against respiratory syncytial virus (RSV) with cytopathic effect (CPE) reduction assay. Compounds 6 and 15 showed anti-RSV effects with IC50 values of 20 and 25 μg/mL, respectively.  相似文献   

20.
Nine dihydroartemisinin acetal dimers (614) with diversely functionalized linker units were synthesized and tested for in vitro antiprotozoal, anticancer and antimicrobial activity. Compounds 6, 7 and 11 [IC50: 3.0–6.7 nM (D6) and 4.2–5.9 nM (W2)] were appreciably more active than artemisinin (1) [IC50: 32.9 nM (D6) and 42.5 nM (W2)] against the chloroquine-sensitive (D6) and chloroquine-resistant (W2) strains of the malaria parasite, Plasmodium falciparum. Compounds 10, 13 and 14 displayed enhanced anticancer activity in a number of cell lines compared to the control drug, doxorubicin. The antifungal activity of 7 and 12 against Cryptococcus neoformans (IC50: 0.16 and 0.55 μM, respectively) was also higher compared to the control drug, amphotericin B. The antileishmanial and antibacterial activities were marginal. A number of dihydroartemisinin acetal monomers (1517) and a trimer (18) were isolated as byproducts from the dimer synthesis and were also tested for biological activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号