共查询到4条相似文献,搜索用时 0 毫秒
1.
John F. Hess Madhu S. Budamagunta Atya Aziz Paul G. FitzGerald John C. Voss 《Protein science : a publication of the Protein Society》2013,22(1):47-55
Very little data have been reported that describe the structure of the tail domain of any cytoplasmic intermediate filament (IF) protein. We report here the results of studies using site directed spin labeling and electron paramagnetic resonance (SDSL‐EPR) to explore the structure and dynamics of the tail domain of human vimentin in tetramers (protofilaments) and filaments. The data demonstrate that in contrast to the vimentin head and rod domains, the tail domains are not closely apposed in protofilaments. However, upon assembly into intact IFs, several sites, including positions 445, 446, 451, and 452, the conserved “beta‐site,” become closely apposed, indicating dynamic changes in tail domain structure that accompany filament elongation. No evidence is seen for coiled‐coil structure within the region studied, in either protofilaments or assembled filaments. EPR analysis also establishes that more than half of the tail domain is very flexible in both the assembly intermediate and the intact IF. However, by positioning the spin label at distinct sites, EPR is able to identify both the rod proximal region and sites flanking the beta‐site motif as rigid locations within the tail. The rod proximal region is well assembled at the tetramer stage with only slight changes occurring during filament elongation. In contrast, at the beta site, the polypeptide backbone transitions from flexible in the assembly intermediate to much more rigid in the intact IF. These data support a model in which the distal tail domain structure undergoes significant conformational change during filament elongation and final assembly. 相似文献
2.
Niklas Fehr Carsten Dietz Yevhen Polyhach Tona von Hagens Gunnar Jeschke Harald Paulsen 《The Journal of biological chemistry》2015,290(43):26007-26020
The major light harvesting complex II (LHCII) of green plants plays a key role in the absorption of sunlight, the regulation of photosynthesis, and in preventing photodamage by excess light. The latter two functions are thought to involve the lumenal loop and the N-terminal domain. Their structure and mobility in an aqueous environment are only partially known. Electron paramagnetic resonance (EPR) has been used to measure the structure of these hydrophilic protein domains in detergent-solubilized LHCII. A new technique is introduced to prepare LHCII trimers in which only one monomer is spin-labeled. These heterogeneous trimers allow to measure intra-molecular distances within one LHCII monomer in the context of a trimer by using double electron-electron resonance (DEER). These data together with data from electron spin echo envelope modulation (ESEEM) allowed to model the N-terminal protein section, which has not been resolved in current crystal structures, and the lumenal loop domain. The N-terminal domain covers only a restricted area above the superhelix in LHCII, which is consistent with the “Velcro” hypothesis to explain thylakoid grana stacking (Standfuss, J., van Terwisscha Scheltinga, A. C., Lamborghini, M., and Kühlbrandt, W. (2005) EMBO J. 24, 919–928). The conformation of the lumenal loop domain is surprisingly different between LHCII monomers and trimers but not between complexes with and without neoxanthin bound. 相似文献
3.
Pistolesi S Ferro E Santucci A Basosi R Trabalzini L Pogni R 《Biophysical chemistry》2006,123(1):49-57
Five singly spin labeled side chains at surface sites in the C-terminal domain of RGL2 protein have been analyzed to investigate the general relationship between nitroxide side chain mobility and protein structure. At these sites, the structural perturbation produced by replacement of a native residue with a nitroxide side chain appears to be very slight at the level of the backbone fold. The primary determinants of the nitroxide side chain mobility are backbone dynamics and tertiary interactions. On the exposed surfaces of alpha-helices, the side chain mobility is not restricted by tertiary interactions but appears to be determined by backbone dynamics, while in loop sites, the side chain mobility is even higher. For a better understanding of the changes in the EPR spectral line shape, molecular dynamics simulations were performed and found in agreement with EPR spectral data. 相似文献
4.
In cyanobacteria, Glu-244 and Tyr-246 of the Photosystem II (PS II) D1 protein are hydrogen bonded to two water molecules that are part of a hydrogen-bond network between the bicarbonate ligand to a non-heme iron and the cytosol. Ala substitutions were introduced in Synechocystis sp. PCC 6803 to investigate the roles of these residues and the hydrogen-bond network on electron transfer between the primary plastoquinone acceptor, QA, and the secondary plastoquinone acceptor, QB, of the quinone-Fe-acceptor complex. All mutants assembled PS II; however, an increase in the PS II to PS I ratio was apparent, particularly in the E244A:Y246A double mutant. The mutants also showed impaired oxygen evolution and retarded chlorophyll a fluorescence decays following single turnover actinic flashes, which appeared to be primarily due to reduced QB binding in the E244A strain and an enhanced back reaction with the S2 state of the oxygen-evolving complex in the Y246A mutant. Impaired PS II in the Y246A and E244A:Y246A mutants resulted in inactivation of the psbA gene encoding D1. The Y246A and E244A:Y246A mutants also showed high light sensitivity whereas the E244A mutant showed enhanced resilience towards photodamage. Unlike the control strain, all of the mutants were insensitive to the addition of formate or bicarbonate in assays following chlorophyll decay kinetics that reflect electron transfer between QA and QB, suggesting the bicarbonate binding environment was perturbed. Our data also indicate that waters W582 and W622 (PDB: 4UB6) have essential roles in maintaining the architecture of the acceptor side of PS II. 相似文献