首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[3H]Meproadifen mustard, an affinity label for the noncompetitive antagonist site of the nicotinic acetylcholine receptor (AChR), specifically alkylates the AChR alpha-subunit when the acetylcholine-binding sites are occupied by agonist (Dreyer, E. B., Hasan, F., Cohen, S. G., and Cohen, J. B. (1986) J. Biol. Chem. 261, 13727-13734). In this report, we identify the site of alkylation within the alpha-subunit as Glu-262. AChR-rich membranes from Torpedo californica electric organ were reacted with [3H]meproadifen mustard in the presence of carbamylcholine and in the absence or presence of nonradioactive meproadifen to define specific alkylation of the noncompetitive antagonist site. Alkylated alpha-subunits were isolated and subjected to chemical or enzymatic cleavage. When digests with CNBr in 70% trifluoroacetic acid or 70% formic acid were fractionated by gel filtration high performance liquid chromatography (HPLC), specifically labeled material was recovered in the void volume fractions. Based upon NH2-terminal sequence analysis, for both digests, the void volume fractions contained a fragment beginning at Gln-208 before the M1 hydrophobic sequence, whereas the sample from the digest in trifluoroacetic acid also contained as a primary sequence a fragment beginning at Thr-244 and extending through the M2 hydrophobic sequence. Sequence analysis revealed no release of 3H for the sample from digestion in formic acid, whereas for the trifluoroacetic acid digest, there was specific release of 3H in cycle 19, which would correspond to Glu-262. This site of alkylation was confirmed by isolation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and reversed-phase HPLC of a specifically labeled fragment from an endoproteinase Lys-C digest of the alkylated alpha-subunit. NH2-terminal amino acid sequencing revealed release of 3H at cycle 20 from a fragment beginning at Met-243 and extending into the M3 hydrophobic sequence. Because [3H]meproadifen mustard contains, as its reactive group, a positively charged quaternary aziridinium ion, Glu-262 of the alpha-subunit is identified as a contributor to the cation-binding domain of the noncompetitive antagonist-binding site and thus of the ion channel.  相似文献   

2.
A binding site for the channel-blocking noncompetitive antagonist [3H]triphenylmethylphosphonium ([3H]TPMP+) was localized in the alpha-, beta- and delta-chains of the nicotinic acetylcholine receptor (AChR) from Torpedo marmorata electric tissue. The photolabel was found in homologous positions of the highly conserved sequence helix II, alpha 248, beta 254, and delta 262. The site of the photoreaction appears to not be affected by the functional state of the receptor. [3H]TPMP+ was found in position delta 262 independent of whether photolabeling was performed with the receptor in its resting, desensitized or antagonist state. A model of the AChR ion channel is proposed, according to which the channel is formed by the five helices II contributed by the five receptor subunits.  相似文献   

3.
4.
Most general anesthetics including long chain aliphatic alcohols act as noncompetitive antagonists of the nicotinic acetylcholine receptor (nAChR). To locate the sites of interaction of a long chain alcohol with the Torpedo nAChR, we have used the photoactivatible alcohol 3-[(3)H]azioctanol, which inhibits the nAChR and photoincorporates into nAChR subunits. At 1 and 275 microm, 3-[(3)H]azioctanol photoincorporated into nAChR subunits with increased incorporation in the alpha-subunit in the desensitized state. The incorporation into the alpha-subunit was mapped to two large proteolytic fragments. One fragment of approximately 20 kDa (alpha V8-20), containing the M1, M2, and M3 transmembrane segments, showed enhanced incorporation in the presence of agonist whereas the other of approximately 10 kDa (alpha V8-10), containing the M4 transmembrane segment, did not show agonist-induced incorporation of label. Within alpha V8-20, the primary site of incorporation was alpha Glu-262 at the C-terminal end of alpha M2, labeled preferentially in the desensitized state. The incorporation at alpha Glu-262 approached saturation between 1 microm, with approximately 6% labeled, and 275 microm, with approximately 30% labeled. Low level incorporation was seen in residues at the agonist binding site and the protein-lipid interface at approximately 1% of the levels in alpha Glu-262. Therefore, the primary binding site of 3-azioctanol is within the ion channel with additional lower affinity interactions within the agonist binding site and at the protein-lipid interface.  相似文献   

5.
C D Weaver  D M Roberts 《Biochemistry》1992,31(37):8954-8959
Nodulin 26 is a nodule-specific protein that is associated with the symbiosome membrane of soybean root nodules. Nodulin 26 is an endogenous substrate for a novel calcium-dependent protein kinase (CDPK) of soybean root nodules. By phosphopeptide mapping of endoproteinase Lys-C-digested nodulin 26 and automated and manual peptide sequence analyses, we have identified the site on nodulin 26 phosphorylated by CDPK. We have also established that the phosphorylation site of nodulin 26 is identical to the phosphorylation site of CK-15, a synthetic peptide with the carboxyl-terminal sequence of nodulin 26. The phosphorylation of nodulin 26 occurs at position Ser262, and the phosphorylation of CK-15 occurs at the analogous position, Ser,6 in vitro. Thus, the CK-15 sequence apparently contains sufficient structural features of the phosphorylation site of nodulin 26 to be recognized by CDPK. On the basis of peptide mapping analysis of nodulin 26 from nodules that are metabolically labeled with [32P]phosphate, it appears that the site of nodulin 26 that is phosphorylated in vitro is also labeled in vivo. The data indicate that the carboxyl terminus of nodulin 26 is phosphorylated by CDPK and provide initial sequence data for the phosphorylation site of an endogenous substrate for a plant CDPK.  相似文献   

6.
The membrane-bound acetylcholine receptor from Torpedo marmorata was photolabeled by the noncompetitive channel blocker [3H]chlorpromazine under equilibrium conditions in the presence of the agonist carbamoylcholine. The amount of radioactivity incorporated into all subunits was reduced by addition of phencyclidine, a specific ligand for the high-affinity site for noncompetitive blockers. The labeled beta chain was purified and digested with trypsin or CNBr, and the resulting fragments were fractionated by high-performance liquid chromatography. Sequence analysis resulted in the identification of Ser-254 and Leu-257 as residues labeled by [3H]chlorpromazine in a phencyclidine-sensitive manner. These residues are located in the hydrophobic and potentially transmembrane segment M II of the beta chain, a region homologous to that containing the chlorpromazine-labeled Ser-262 in the delta chain [Giraudat, J., Dennis, M., Heidmann, T., Chang, J. Y., & Changeux, J.-P. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 2719-2723]. These results show that homologous regions of different receptor subunits contribute to the unique high-affinity site for noncompetitive blockers, a finding consistent with the location of this site on the axis of symmetry of the receptor molecule.  相似文献   

7.
Murai M  Mashimo Y  Hirst J  Miyoshi H 《Biochemistry》2011,50(32):6901-6908
Quinazolines are strong inhibitors of NADH-ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Using a photoreactive quinazoline, [(125)I]AzQ, and bovine heart submitochondrial particles (SMPs), we demonstrated previously that [(125)I]AzQ binds at the interface of the 49 kDa and ND1 subunits in complex I; it labeled a site in the N-terminal (Asp41-Arg63) region of the 49 kDa subunit, suggesting that this region contacts the ND1 subunit [Murai, M., et al. (2009) Biochemistry 48, 688-698]. The labeled region of ND1 could not be identified because it is highly hydrophobic, and the SMPs did not yield sufficient amounts of labeled protein. Here, we describe how photoaffinity labeling of isolated complex I by [(125)I]AzQ yielded sufficient material for identification of the labeled region of the ND1 subunit. The inhibition of the isolated enzyme by AzQ is comparable to that of SMPs. Our results reveal that the labeled site in ND1 is between Asp199 and Lys262, mostly likely in the third matrix loop that connects the fifth and sixth transmembrane helices. Thus, our results reveal new information about the interface between the hydrophilic and hydrophobic domains of complex I, a region that is thought to be important for ubiquinone reduction and energy transduction.  相似文献   

8.
It is proposed the link between the hyperactivity of NMDA receptors and airway hyperresponsiveness. We investigated the effect of agents modulating the activity of NMDA receptors in the ovalbumin-induced airway hyperreactivity in guinea pigs. The airways hyperreactivity was influenced by the agonist (NMDA) and selective antagonist - competitive (AP-5) and non-competitive (MK-801) of NMDA receptors. Airway responsiveness to histamine or acetylcholine was evaluated in in vitro conditions. NMDA administration caused the increase of tracheal smooth muscle response in ovalbumin-induced hyperreactivity to acetylcholine. MK 801 as well as AP-5 provoked the decrease of reactivity mainly to acetylcholine in tracheal smooth muscle, while the former, non-competitive antagonist was more effective. We recorded more pronounced response in tracheal than in lung tissue smooth muscle with more considerable response to acetylcholine than to histamine. The results of experiments show the modification of airway smooth muscles responses by agents modulating the activity of NMDA receptors. They confirm the possibility of NMDA receptors participation in experimental airway hyperreactivity. The results enlarge information regarding the link of the inflammatory diseases and glutamatergic system.  相似文献   

9.
Drug–drug interactions (DDIs) and associated toxicity from cardiovascular drugs represents a major problem for effective co-administration of cardiovascular therapeutics. A significant amount of drug toxicity from DDIs occurs because of drug interactions and multiple cardiovascular drug binding to the efflux transporter P-glycoprotein (Pgp), which is particularly problematic for cardiovascular drugs because of their relatively low therapeutic indexes. The calcium channel antagonist, verapamil and the cardiac glycoside, digoxin, exhibit DDIs with Pgp through non-competitive inhibition of digoxin transport, which leads to elevated digoxin plasma concentrations and digoxin toxicity. In the present study, verapamil-induced ATPase activation kinetics were biphasic implying at least two verapamil-binding sites on Pgp, whereas monophasic digoxin activation of Pgp-coupled ATPase kinetics suggested a single digoxin-binding site. Using intrinsic protein fluorescence and the saturation transfer double difference (STDD) NMR techniques to probe drug–Pgp interactions, verapamil was found to have little effect on digoxin–Pgp interactions at low concentrations of verapamil, which is consistent with simultaneous binding of the drugs and non-competitive inhibition. Higher concentrations of verapamil caused significant disruption of digoxin–Pgp interactions that suggested overlapping and competing drug-binding sites. These interactions correlated to drug-induced conformational changes deduced from acrylamide quenching of Pgp tryptophan fluorescence. Also, Pgp-coupled ATPase activity kinetics measured with a range of verapamil and digoxin concentrations fit well to a DDI model encompassing non-competitive and competitive inhibition of digoxin by verapamil. The results and previous transport studies were combined into a comprehensive model of verapamil–digoxin DDIs encompassing drug binding, ATP hydrolysis, transport and conformational changes.  相似文献   

10.
AMD3100 is a symmetric bicyclam, prototype non-peptide antagonist of the CXCR4 chemokine receptor. Mutational substitutions at 16 positions located in TM-III, -IV, -V, -VI, and -VII lining the main ligand-binding pocket of the CXCR4 receptor identified three acid residues: Asp(171) (AspIV:20), Asp(262) (AspVI:23), and Glu(288) (GluVII:06) as the main interaction points for AMD3100. Molecular modeling suggests that one cyclam ring of AMD3100 interacts with Asp(171) in TM-IV, whereas the other ring is sandwiched between the carboxylic acid groups of Asp(262) and Glu(288) from TM-VI and -VII, respectively. Metal ion binding in the cyclam rings of AMD3100 increased its dependence on Asp(262) and provided a tighter molecular map of the binding site, where borderline mutational hits became clear hits for the Zn(II)-loaded analog. The proposed binding site for AMD3100 was confirmed by a gradual build-up in the rather distinct CXCR3 receptor, for which the compound normally had no effect. Introduction of only a Glu at position VII:06 and the removal of a neutralizing Lys residue at position VII:02 resulted in a 1000-fold increase in affinity of AMD3100 to within 10-fold of its affinity in CXCR4. We conclude that AMD3100 binds through interactions with essentially only three acidic anchor-point residues, two of which are located at one end and the third at the opposite end of the main ligand-binding pocket of the CXCR4 receptor. We suggest that non-peptide antagonists with, for example, improved oral bioavailability can be designed to mimic this interaction and thereby efficiently and selectively block the CXCR4 receptor.  相似文献   

11.
Mutagenesis of recombinant rho1 gamma-aminobutyric acid (GABA) receptors has previously identified five residues in the amino terminal extracellular domain that play an important role in GABA binding. Here, we present evidence that the tyrosine at position 102 of the rho1 receptor is also associated with the agonist binding site. Wild-type and mutant rho1 receptors were expressed in Xenopus laevis oocytes and examined using the two-electrode voltage clamp. When Tyr-102 was mutated to cysteine, serine, tryptophan, or glycine the EC(50) increased 31-, 214-, 664-, and 8752-fold, respectively. An increase in the IC(50) was also observed for the competitive antagonist 3-APMPA, but not for the non-competitive antagonist picrotoxin. Y102C was accessible to modification by methanethiosulfonate, and this modification was prevented by both GABA and 3-APMPA. An interesting characteristic of the Y102S mutant receptor was that, in the absence of GABA, there was an unusually high oocyte resting conductance that was blocked by both 3-APMPA and picrotoxin, indicating spontaneously opening GABA receptors. It appears that mutation of Tyr-102 perturbs the binding site and gates the pore. We conclude that Tyr-102 is a component of the GABA binding domain and speculate that Tyr-102 might be important for coupling agonist binding to channel opening.  相似文献   

12.
Botulinum neurotoxin type A (BoNT/A) light chain (LC) is a zinc endopeptidase that causes neuroparalysis by blocking neurotransmitter release at the neuromuscular junctions. The X-ray crystal structure of the toxin reveals that His223 and His227 of the Zn(2+) binding motif HEXXH directly coordinate the active site zinc. Two Glu residues (Glu224 and Glu262) are also part of the active site, with Glu224 coordinating the zinc via a water molecule whereas Glu262 coordinates the zinc directly as the fourth ligand. In the past we have investigated the topographical role of Glu224 by replacing it with Asp thus reducing the side chain length by 1.4 A that reduced the endopeptidase activity dramatically [L. Li, T. Binz, H. Niemann, and B.R. Singh, Probing the role of glutamate residue in the zinc-binding motif of type A botulinum neurotoxin light chain, Biochemistry 39 (2000) 2399-2405]. In this study we have moved the Glu 224 laterally by a residue (HXEXH) to assess its positional influence on the endopeptidase activity, which was completely lost. The functional implication of Glu262 was investigated by replacing this residue with aspartate and glutamine using site-directed mutagenesis. Substitution of Glu262 with Asp resulted in a 3-fold decrease in catalytic efficiency. This mutation did not induce any significant structural alterations in the active site and did not interfere with substrate binding. Substitution of Glu262 with Gln however, dramatically impaired the enzymatic activity and this is accompanied by global alterations in the active site conformation in terms of topography of aromatic amino acid residues, zinc binding, and substrate binding, resulting from the weakened interaction between the active site zinc and Gln. These results suggest a pivotal role of the negatively charged carboxyl group of Glu262 which may play a critical role in enhancing the stability of the active site with strong interaction with zinc. The zinc may thus play structural role in addition to its catalytic role.  相似文献   

13.
Understanding of the conformational changes in G protein-coupled receptors associated with activation and inactivation is of great interest. We previously used photoaffinity labeling to elucidate spatial approximations between photolabile residues situated throughout the pharmacophore of secretin agonist probes and this receptor. The aim of the current work was to develop analogous photolabile secretin antagonist probes and to explore their spatial approximations. The most potent secretin antagonist reported is a pseudopeptide ([psi(4, 5)]secretin) in which the peptide bond between residues 4 and 5 was replaced by a psi(CH(2)-NH) peptide bond isostere. We have developed a series of [psi(4, 5)]secretin analogs incorporating photolabile benzoyl phenylalanine residues in positions 6, 22, and 26. Each bound to the secretin receptor saturably and specifically, with affinity similar to their parental peptide. At concentrations with no measurable agonist activity, each probe covalently labeled the secretin receptor. Peptide mapping using proteolytic cleavage, immunoprecipitation, and radiochemical sequencing identified that each of these three probes labeled the amino terminus of the secretin receptor. Whereas the position 22 probe labeled the same residue as its analogous agonist probe and the position 6 probe labeled a residue within two residues of that labeled by its analogous agonist probe, the position 26 probe labeled a site 16 residues away from that labeled by its analogous agonist probe. Thus, whereas structurally related agonist and antagonist probes dock in the same general region of this receptor, conformational differences in active and inactive states result in substantial differences in spatial approximation at the carboxyl-terminal end of secretin analogs.  相似文献   

14.
Abstract

The NMDA subtype of glutamate receptors is allosterically linked to a strychnine-insensitive glycine regulatory site. Kynurenic acid and its halogenated derivatives are non-competitive NMDA antagonists acting at the glycine site. We have prepared [3H] 5,7-dichlorokyrurenic acid (DCKA) as an antagonist radioligand and have characterized its binding. 3-Bromo-5,7-DCKA was catalytically dehalogenated in the presence of tritium gas and HPLC purified to yield [3H] 5,7-DCKA with a specific activity of 17.6 Ci/mmol. [3H] 5,7-DCKA bound to rat brain synaptosomes with a Kd of 69 ± 23 nM and Bmax = 14.5 ± 3.2 pmoles/mg protein. Binding was 65–70% specific at 10 nM [3H] 5,7-DCKA. This ligand is thus more selective and has higher affinity than [3H] glycine, in addition to being an antagonist.  相似文献   

15.
We have investigated the mechanism of inhibition and site of action of the novel human metabotropic glutamate receptor 5 (hmGluR5) antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP), which is structurally unrelated to classical metabotropic glutamate receptor (mGluR) ligands. Schild analysis indicated that MPEP acts in a non-competitive manner. MPEP also inhibited to a large extent constitutive receptor activity in cells transiently overexpressing rat mGluR5, suggesting that MPEP acts as an inverse agonist. To investigate the molecular determinants that govern selective ligand binding, a mutagenesis study was performed using chimeras and single amino acid substitutions of hmGluR1 and hmGluR5. The mutants were tested for binding of the novel mGluR5 radioligand [(3)H]2-methyl-6-(3-methoxyphenyl)ethynyl pyridine (M-MPEP), a close analog of MPEP. Replacement of Ala-810 in transmembrane (TM) VII or Pro-655 and Ser-658 in TMIII with the homologous residues of hmGluR1 abolished radioligand binding. In contrast, the reciprocal hmGluR1 mutant bearing these three residues of hmGluR5 showed high affinity for [(3)H]M-MPEP. Radioligand binding to these mutants was also inhibited by 7-hydroxyiminocyclopropan[b]chromen-1a-carboxylic acid ethyl ester (CPCCOEt), a structurally unrelated non-competitive mGluR1 antagonist previously shown to interact with residues Thr-815 and Ala-818 in TMVII of hmGluR1. These results indicate that MPEP and CPCCOEt bind to overlapping binding pockets in the TM region of group I mGluRs but interact with different non-conserved residues.  相似文献   

16.
(-)-[3H]Desmethoxyverapamil (2,7-dimethyl-3-(3,4-dimethoxyphenyl)-3-cyan- 7-aza-9-(3-methoxyphenyl)-nonanhydrochloride) was used to label putative Ca2+ channels in guinea pig skeletal muscle. The binding sites for (-)-[3H]desmethoxyverapamil co-purified with t-tubule membrane markers in an established subcellular fractionation procedure. (-)-[3H]Desmethoxyverapamil bound to partially purified t-tubule membranes with a KD of 2.2 +/- 0.1 nM and a Bmax of 18 +/- 4 pmol/mg membrane protein at 25 degrees C. Binding was stereoselectively inhibited by phenylalkylamine Ca2+ antagonists and in a mixed, non-competitive fashion by the benzothiazepine Ca2+ antagonist d-cis-diltiazem and the 1,4-dihydropyridine Ca2+ antagonist (+)-PN 200-110. Target size analysis of the (-)-[3H]desmethoxyverapamil drug receptor site revealed a molecular mass of 107 +/- 2 kDa. In contrast, the target size of the allosterically coupled benzothiazepine drug receptor site, labelled by d-cis-[3H]diltiazem, was 130.5 +/- 4 kDa (p less than 0.01) and of the 1,4-dihydropyridine binding site 179 kDa, when labelled with [3H]nimodipine. It is concluded that (-)-[3H]desmethoxyverapamil is an extremely useful radioligand for the phenylalkylamine-selective receptor site of the t-tubule localized Ca2+ channel which is allosterically linked to two other distinct drug receptor sites.  相似文献   

17.
Recombinant mouse phosphatidylinositol transfer protein (PI-TP)beta is a substrate for protein kinase C (PKC)-dependent phosphorylation in vitro. Based on site-directed mutagenesis and two-dimensional tryptic peptide mapping, Ser(262) was identified as the major site of phosphorylation and Ser(165) as a minor phosphorylation site. The phospholipid transfer activities of wild-type PI-TP beta and PI-TP beta(S262A) were identical, whereas PI-TP beta(S165A) was completely inactive. PKC-dependent phosphorylation of Ser(262) also had no effect on the transfer activity of PI-TP beta. To investigate the role of Ser(262) in the functioning of PI-TP beta, wtPI-TP beta and PI-TP beta(S262A) were overexpressed in NIH3T3 fibroblast cells. Two-dimensional PAGE analysis of cell lysates was used to separate PI-TP beta from its phosphorylated form. After Western blotting, wtPI-TP beta was found to be 85% phosphorylated, whereas PI-TP beta(S262A) was not phosphorylated. In the presence of the PKC inhibitor GF 109203X, the phosphorylated form of wtPI-TP beta was strongly reduced. Immunolocalization showed that wtPI-TP beta was predominantly associated with the Golgi membranes. In the presence of the PKC inhibitor, wtPI-TP beta was distributed throughout the cell similar to what was observed for PI-TP beta(S262A). In contrast to wtPI-TP beta overexpressors, cells overexpressing PI-TP beta(S262A) were unable to rapidly replenish sphingomyelin in the plasma membrane upon degradation by sphingomyelinase. This implies that PKC-dependent association with the Golgi complex is a prerequisite for PI-TP beta to express its effect on sphingomyelin metabolism.  相似文献   

18.
Yu DY  Luo J  Bu F  Song GJ  Zhang LQ  Wei Q 《Biological chemistry》2006,387(7):977-983
Calcineurin is a Ca2+/calmodulin-dependent phosphatase that dephosphorylates numerous substrates in different neuronal compartments. Genetic and pharmacological studies have provided insight into its involvement in the brain. Cyclosporin A (CsA) is used as a specific calcineurin inhibitor in many pharmacological experiments. However, the calcineurin activity of CsA-treated brain has not been reported. To examine the relationship between calcineurin activity and brain function, we injected CsA into the left lateral ventricle of the mouse brain and assayed calcineurin activity. CsA reduced calcineurin activity in a dose-dependent manner, without affecting the amount of calcineurin protein. Assays of the effect of protein phosphatase inhibitors on CsA-injected mouse brain extracts and kinetic analysis revealed that CsA inhibited calcineurin activity in a non-competitive manner in vivo, in agreement with in vitro results. Injection of CsA led to enhanced phosphorylation of tau at Ser-262 (12E8 site), Ser-198, Ser-199, and/or Ser-202 (Tau-1 site) and Ser-396 and/or Ser-404 (PHF-1 site), as well as to impaired spatial memory, which are two characteristic features of Alzheimer's disease. We propose that inhibition of calcineurin may play an important role in Alzheimer's disease.  相似文献   

19.
In the previous experiment (Suzuki, H., Obara, M., Kuwayama, H., and Kanazawa, T. (1987) J. Biol. Chem. 262, 15448-15456), the Ca2+-ATPase of sarcoplasmic reticulum vesicles was labeled with N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine without a loss of the catalytic activity. The main labeled site was Cys674. A large monophasic fluorescence drop occurred upon ATP binding to the catalytic site of the Ca2+-activated enzyme in the presence of K+. The present results show that this fluorescence drop is biphasic in the absence of K+. The first and rapid phase of this drop accounts for most of the fluorescence drop. This phase reflects a conformational change in the enzyme.ATP complex. The second and slow phase, being much smaller than the first phase, coincides with phosphoenzyme (EP) isomerization from the ADP-sensitive form to the ADP-insensitive form. This phase disappears when accumulation of ADP-insensitive EP is inhibited by K+ or when EP isomerization is prevented by the N-ethylmaleimide treatment. These results show that this phase reflects a conformational change upon EP isomerization. When free Ca2+ is chelated after EP formation from ATP, the fluorescence intensity is restored to the initial level without Ca2+. This restoration coincides with EP decomposition. This suggests that the fluorescence restoration reflects a conformational change upon hydrolysis of ADP-insensitive EP. This probability is supported by the concurrent occurrence of the Pi-induced fluorescence drop and EP formation from Pi. The results demonstrate that the fluorescence drop upon ATP binding is predominant in the fluorescence change throughout the catalytic cycle.  相似文献   

20.
Chen W  Hu CY  Crampton DJ  Frasch WD 《Biochemistry》2000,39(31):9393-9400
Metal ligands of the VO(2+)-adenosine diphosphate (ADP) complex bound to high-affinity catalytic site 1 of chloroplast F(1) adenosine triphosphatase (CF(1) ATPase) were characterized by electron paramagnetic resonance (EPR) spectroscopy. This EPR spectrum contains two EPR species designated E and F not observed when VO(2+)-nucleotide is bound to site 3 of CF(1). Site-directed mutations betaE197C, betaE197D, and betaE197S in Chlamydomonas CF(1) impair ATP synthase and ATPase activity catalyzed by CF(1)F(o) and soluble CF(1), respectively, indicating that this residue is important for enzyme function. These mutations caused large changes in the (51)V hyperfine tensors of VO(2+)-nucleotide bound to site 1 but not to site 3. Mutations to the Walker homology B aspartate betaD262C, betaD262H, and betaD262T of Chlamydomonas CF(1) caused similar effects on the EPR spectrum of VO(2+)-ADP bound to site 1. These results indicate that the conversion of the low-affinity site 3 conformation to high-affinity site 1 involves the incorporation betaE197 and betaD262 as metal ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号