首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to compare the growth and short-term (single season) competitive performance of three species of Polygonum known to differ in flooding tolerance and life history. Polygonum amphibium is a perennial with low sexual reproductive effort and a relatively high degree of flooding tolerance, P. lapathifolium is an annual species with a high sexual reproductive effort and a low tolerance to flooding, and P. hydropiperoides is intermediate to the other two in terms of sexual reproductive effort and flooding tolerance. In order to determine the relative growth and competitive abilities of these species, mixtures and monocultures of plants were grown in pots and maintained under three flooding regimes: 1) flooded, 2) partially drained, and 3) well drained. Both P. hydropiperoides and P. amphibium grew best under flooded and partially drained conditions with reduced growth in the drained treatment. Polygonum lapathifolium, in contrast, grew as well in the drained treatment as in the more flooded treatments. Results from competition experiments were consistent in showing the relative competitive abilities to be P. lapathifolium > P. hydropiperoides > P. amphibium regardless of flooding regime. Thus, short-term competitive performance was found to trade off with flood tolerance rather than with sexual reproductive effort.  相似文献   

2.
Organic anion exudation by roots as a mechanism of aluminium (Al) resistance has been intensively studied lately. In the present study, we evaluated qualitative and quantitative aspects of root exudation of organic anions in maize genotypes of distinct sensitivity to Al in response to Al exposure. Maize seedlings were grown axenically in nutrient solution and root exudates were collected along the whole seminal root axis for a short period (4 h) using a divided-root-chamber technique. In root exudates collected from 10-mm long root apices, citrate accounted for 67% of the total organic anions found, followed by malate (29%), trans-aconitate (3%), fumarate (<1%), and cis-aconitate (1%). Rates of citrate exudation from root apices of two genotypes with differential resistance to Al were consistently higher in the Al resistant one, differing by a factor of 1.7 – 3.0 across a range of external Al concentrations. Furthermore, relative Al resistance of eight maize genotypes correlated significantly well with their citrate exudation rate measured at 40 M Al. Higher exudation rates were accompanied by a less inhibited root elongation. The exudation of citrate along the longitudinal axis of fully developed seminal roots showed a particular pattern: citrate was exuded mainly in the regions of root apices, either belonging to the main root or to the lateral roots in the most basal part of the main root. The involvement of citrate in a mechanism of Al resistance is evaluated in terms of protection of the root from the effects of excess Al on root elongation and on nutrient uptake along a root axis showing distinct sites of citrate exudation.  相似文献   

3.
采用水培试验,研究了铝胁迫下两个胡枝子品种根尖产生胼胝质的变化规律及影响因素。结果表明,两个品种的根尖铝吸收量与胼胝质形成量呈正比例关系。品种间差异主要是在根尖0—0.5 cm处。敏感品种胼胝质形成量同铝吸收量的变化趋势相一致,而耐性品种则在铝处理6 h时出现一个高峰值后下降。去除铝胁迫后,耐性品种胼胝质形成量并不显著减少。与单独铝处理相比,阴离子通道抑制剂苯甲酰甲醛加铝处理对两个品种胼胝质形成无影响;尼氟灭酸加铝处理抑制敏感品种胼胝质的形成,对耐性品种无影响;蒽-9-羧酸加铝处理显著抑制两个品种的胼胝质形成。另外,抑制剂2-去氧-D-葡萄糖加铝共同处理与单独铝处理相比,敏感品种的胼胝质形成量显著降低,耐性品种无影响。甘露醇对两个品种胼胝质形成的影响无显著差别。镧处理下胼胝质的形成量是耐性品种显著高于敏感品种,铝、镧同时处理胼胝质的形成量最高。敏感品种胼胝质形成处理间无差别。总之,耐性品种在铝胁迫下胼胝质形成与有机酸分泌可能存在一定的协调关系;铝胁迫下胼胝质形成是敏感指标;在一定条件下,特别是有机酸分泌前胼胝质的形成可能具有一定抗性意义;铝诱导胼胝质的形成受多种外界因素(浓度、时间、有机酸分泌,渗透压等)的影响。  相似文献   

4.
Aluminium (Al)-induced secretion of organic acids from plant roots is considered a mechanism of Al resistance, but the processes leading to the secretion of organic acids are still unknown. In the present study, a protein-synthesis inhibitor, cycloheximide (CHM), was used to investigate its effect on Al-induced organic acid secretion in a pattern I (rapid exudation of organic acids under Al stress) plant buckwheat (Fagopyrum esculentum Moench) and a pattern II (exudation of organic acids was delayed by several hours under Al stress) plant Cassia tora L. A dose-response experiment showed that the secretion of oxalate by buckwheat roots was not affected by CHM when added in the range from 0 to 50 microM, with or without exposure to 100 microm Al, but the secretion of citrate was completely inhibited by 30 microM CHM in C. tora. A time-course experiment showed that even prolonged exposure to 20 microM CHM did not affect oxalate secretion in buckwheat, but significantly inhibited citrate secretion in C. tora. However, citrate synthase (CS) activity in C. tora was not affected during 12 h exposure to 100 microM Al when compared with that in control roots, although CHM can inhibit CS activity effectively. These results indicated that CS activity was not related to Al-regulated citrate efflux in C. tora. The total protein was decreased by 14.0% and 32.3% in C. tora and buckwheat root tip, respectively, after 3-h treatment with 20 microM CHM. A 3-h pulse with 20 microM CHM completely inhibited citrate efflux in C. tora during the next 6-h exposure to Al, although a small amount of citrate was exuded after 9-h exposure. However, oxalate efflux in buckwheat was not influenced by a similar treatment. In buckwheat, a 3-h pulse with 100 microM Al maintained oxalate secretion at a high level during the next 9 h, with or without CHM treatment. Conversely, in C. tora a 6-h pulse with 100 microM Al induced significant secretion of citrate which was inhibited by the CHM. Taken together, these findings suggest that both de novo synthesis and activation of an anion channel are needed for Al-induced secretion of citrate in C. tora, but in buckwheat the plasma membrane protein responsible for oxalate secretion pre-exists.  相似文献   

5.

Background and Aims

Aluminium (Al) toxicity is one of the factors limiting crop production on acid soils. However, genotypic differences exist among plant species or cultivars in response to Al toxicity. This study aims to investigate genotypic differences among eight cultivars of tatary buckwheat (Fagopyrum tataricum) for Al resistance and explore the possible mechanisms of Al resistance.

Methods

Al resistance was evaluated based on relative root elongation (root elongation with Al/root elongation without Al). Root apex Al content, pectin content and exudation of root organic acids were determined and compared.

Key Results

Genotypic differences among the eight cultivars were correlated with exclusion of Al from the root apex. However, there was a lack of correlation between Al exclusion and Al-induced oxalate secretion. Interestingly, cell-wall pectin content of the root apex was generally lower in Al-resistant cultivars than in Al-sensitive cultivars. Although we were unable to establish a significant correlation between Al exclusion and pectin content among the eight cultivars, a strong correlation could be established among six cultivars, in which the pectin content in the most Al-resistant cultivar ‘Chuan’ was significantly lower than that in the most Al-sensitive cultivar ‘Liuku2’. Furthermore, root apex cell-wall pectin methylesterase activity (PME) was similar in ‘Chuan’ and ‘Liuku2’ in the absence of Al, but Al treatment resulted in increased PME activity in ‘Liuku2’ compared with ‘Chuan’. Immunolocalization of pectins also showed that the two cultivars had similar amounts of either low-methyl-ester pectins or high-methyl-ester pectins in the absence of Al, but Al treatment resulted in a more significant increase of low-methyl-ester pectins and decrease of high-methyl-ester pectins in ‘Liuku2’.

Conclusions

Cell-wall pectin content may contribute, at least in part, to differential Al resistance among tatary buckwheat cultivars.  相似文献   

6.
Watanabe  Toshihiro  Osaki  Mitsuru  Tadano  Toshiaki 《Plant and Soil》2001,231(2):283-291
The mechanism of Al uptake in melastoma (Melastoma malabathricum L.), which accumulates Al in excess of 10 000 mg kg–1 in its leaves and roots, was investigated. Al uptake kinetics in excised melastoma roots showed a biphasic pattern, with an initial rapid phase followed by a slow phase. It was indicated that Al uptake in the excised roots occurs mostly through passive accumulation in the apoplast. On the other hand, Al uptake rate in roots of whole melastoma plant was almost double that in excised roots. The difference of Al uptake rate between excised roots and whole plant seems to be due to transpiration-depended Al uptake. Results from a long-term experiment showed that different characteristics of Al accumulation between melastoma and barley was caused by the difference in capacity to retain Al in root symplast, rather than by the difference in uptake rate into symplast. Concentrations of oxalate in root symplastic and apoplastic fractions, and total oxalate in shoots and roots, did not change greatly with time of Al exposure compared to Al concentration, although oxalate is considered as a main Al ligand in tissue of melastoma. On the other hand, oxalate exudation to root apoplast was induced within 24 h of Al exposure; the role of such exudation was discussed.  相似文献   

7.
We investigated the roles of Al-binding ligands in Al exclusion from roots and in internal Al detoxification in roots as Al resistance mechanisms in two Al-resistant Myrtaceae trees, Eucalyptus camaldulensis Dehnh. and Melaleuca cajuputi Powell. The amounts of ligands secreted from roots and contained in root tips of these species were compared with those of an Al-sensitive species, Melaleuca bracteata F. Muell., after the roots were exposed to 0 or 1 mM AlCl3 solution. Secretion of well-known ligands (citrate, oxalate, and malate) from roots under Al treatment was low in all species. However, in E. camaldulensis, the Al-binding capacity of root exudates under Al treatment was considerable and was higher than that in M. bracteata. Gel filtration chromatography revealed that a low-molecular-weight Al-binding ligand was secreted from roots in response to Al only in E. camaldulensis. On the other hand, the Al-binding capacity of cell sap in root tips under Al treatment was similar for the resistant and sensitive species. These results suggest that Al exclusion by secretion of the unknown low-molecular-weight Al-binding ligand from roots contributes to the Al resistance of E. camaldulensis, whereas M. cajuputi has developed Al-resistance mechanisms other than secretion of ligands from roots or concentration of internal ligands in root tips.  相似文献   

8.
Ma JF  Hiradate S 《Planta》2000,211(3):355-360
 The forms of Al for uptake by the roots and translocation from the root to the shoot were investigated in a buckwheat (Fagopyrum esculentum Moench, cv. Jianxi) that accumulates Al in its leaves. The Al concentration in the xylem sap was 15-fold higher in the plants exposed to AlCl3 than in those exposed to an Al-oxalate (1:3) complex, suggesting that the roots take up Al in the ionic form. The Al concentration in the xylem sap was 4-fold higher than that in the external solution after a 1-h exposure to AlCl3 solution and 10-fold higher after a 2-h exposure. The Al concentration in the xylem sap increased with increasing Al concentration in the external solution. The Al uptake was not affected by a respiratory inhibitor, hydroxylamine, but significantly inhibited by the addition of La. These results suggest that Al uptake by the root is a passive process, and La3+ competes for the binding sites for Al3+ on the plasma membrane. The form of Al in the xylem sap was identified by 27Al-nuclear magnetic resonance analysis. The chemical shift of 27Al in the xylem sap was around 10.9 ppm, which is consistent with that of the Al-citrate complex. Furthermore, the dominant organic acid in the xylem sap was citric acid, indicating that Al was translocated in the form of Al-citrate complex. Because Al is present as Al-oxalate (1:3) in the root, the present data show that ligand exchange from oxalate to citrate occurs before Al is released to xylem. Received: 10 December 1999 / Accepted: 3 February 2000  相似文献   

9.
Variation at six polymorphic enzymatic loci was studied in 50 populations of the selfing annualPolygonum aviculare from Belgium. The results show that theP. aviculare complex has an allopolyploid origin and comprises two main genetic entities, viz.P. aviculare subsp.depressum (2n = 4x = 40), restricted to urban sites subject to trampling stress, andP. aviculare subsp.aviculare (2n = 4x = 40, 2n = 6x = 60), with a wider ecological amplitude. The latter had a higher genetic diversity and a higher frequency of fixed heterozygosity than the former. WithinP. aviculare subsp.aviculare, genetic diversity and ecological amplitude correlated positively with ploidy level. Additionally, stronger genetic differentiation among and lower variation within populations was found in urban areas than in cultivated fields.  相似文献   

10.
The pollen of 30 taxa (27 species, one subspecies and two varieties) in two genera, viz Polygonum s. str. and Polygonella was investigated with LM and SEM, and some selected taxa with TEM. In all genera investigated the pollen is prolate to spheroidal, and the aperture is mostly tricolporate, rarely panto-hexacolporate (especially Polygonum section Polygonum). The exine sculpturing pattern is the most variable feature. Three types of exine can be recognized. Type 1 (Avicularia-Type, sensu Hedberg) - All species of section Polygonum and section Tephis share the smooth tectate exine with spinules, sometimes the surface is more or less rough (Polygonum afromontanum in section Tephis). Type 2 (Pseudomollia-Type, sensu Hong) - Pollen of Polygonum molliaeforme (section Pseudomollia) has the exine, which is verrucose on both poles and nearby the mesocolpium, and mostly psilate around the ectoaperture. Type 3 (Duravia-Type, sensu Hedberg) - Pollen grains of Polygonum section Duravia and Polygonella have the exine which is semitectate-reticulate at the mesocolpium and the poles, and rugulate/reticulate or sometimes foveolate with microspinules around the ectoapertures. The pollen grains in four taxa (viz Polygonum section Pseudomollia, P. section Duravia and genus Polygonella) have a well-marked dimorphism of the ektexine, which is considered to be a synapomorphic condition. The differences of pollen grain between the genus Polygonella and Polygonum section Duravia are almost non existent and clearly interrelated. It is therefore postulated that the similarity in pollen of both taxa is not the result of convergency, but is interpreted as a homology. It is noteworthy that the pollen of Polygonum molliaeforme (section Pseudomollia) appears as intermediate between the Avicularia-type and the Duravia-type, and is well supported the value of separated section for its own. Additionally, in TEM, some exine ultrastructures (e.g. columellae, foot layer, endexine) appear to be valuable characters for comparison between/among taxa. The systematic potentialities of the pollen data of the studied taxa at various systematic levels are also discussed.  相似文献   

11.
Lespedeza bicolor (Lespedeza bicolor Turcz. cv. Jiangxi) is a leguminous shrub that is well adapted to acid infertile soils. However, the mechanisms of aluminum resistance in this species have not been established. This study aimed to assess the possible resistance mechanisms of this plant to Al. An Al-sensitive species of Lespedeza, sericea lespedeza [Lespedeza cuneata (Dum.-Cours.) G. Don cv. Zhejiang], was used as a reference. The roots of L. bicolor secreted both malate and citrate after exposure to Al, but roots of L. cuneata did not. The secretion of organic acids from L. bicolor was specific to Al; neither 15-day P starvation nor 50 μM lanthanum induced the secretion of these organic acid anions. Secretion of organic acid anions in L. bicolor was detected after 3–6 h exposure to Al, and the amount increased significantly after 6 h exposure, suggesting that this plant shows a pattern II-type organic acid secretion. This is supported by the finding that the secretion was significantly inhibited by a protein-synthesis inhibitor, cycloheximide. Two kinds of anion-channel inhibitors had different effects on Al-induced secretion of organic acids: 9-anthracene carboxylic acid completely inhibited secretion, phenylglyoxal had no effect. Root elongation in L. bicolor was more severely inhibited by Al in the presence of 9-anthracene carboxylic acid. All these results indicated that the secretion of malate and citrate is a specialized response to Al stress in L. bicolor roots, which might be one of the Al-resistance mechanisms in this species.  相似文献   

12.
Aluminum (Al) toxicity is a primary limitation to plant growth on acid soils. Root meristems are the first site for toxic Al accumulation, and therefore inhibition of root elongation is the most evident physiological manifestation of Al toxicity. Plants may resist Al toxicity by avoidance (Al exclusion) and/or tolerance mechanisms (detoxification of Al inside the cells). The Al exclusion involves the exudation of organic acid anions from the root apices, whereas tolerance mechanisms comprise internal Al detoxification by organic acid anions and enhanced scavenging of free oxygen radicals. One of the most important advances in understanding the molecular events associated with the Al exclusion mechanism was the identification of the ALMT1 gene (Al-activated malate transporter) in Triticum aestivum root cells, which codes for a plasma membrane anion channel that allows efflux of organic acid anions, such as malate, citrate or oxalate. On the other hand, the scavenging of free radicals is dependent on the expression of genes involved in antioxidant defenses, such as peroxidases (e.g. in Arabidopsis thaliana and Nicotiana tabacum), catalases (e.g. in Capsicum annuum), and the gene WMnSOD1 from T. aestivum. However, other recent findings show that reactive oxygen species (ROS) induced stress may be due to acidic (low pH) conditions rather than to Al stress. In this review, we summarize recent findings regarding molecular and physiological mechanisms of Al toxicity and resistance in higher plants. Advances have been made in understanding some of the underlying strategies that plants use to cope with Al toxicity. Furthermore, we discuss the physiological and molecular responses to Al toxicity, including genes involved in Al resistance that have been identified and characterized in several plant species. The better understanding of these strategies and mechanisms is essential for improving plant performance in acidic, Al-toxic soils.  相似文献   

13.
《Aquatic Botany》1986,23(4):341-349
Justicia americana (L.) Vahl is one of the most common species associated with seasonally variable aquatic habitats in the south-central U.S.A. When water levels decline, litter of Justicia decomposes on the exposed mudflats where most emergent aquatic species typically germinate and establish. In this study, we have tested the effects of aqueous leachates of Justicia shoots on the germination, seedling growth and established plant growth of Polygonum lapathifolium L., a common annual colonizer of exposed mudflats. Maximal leachate concentrations were prepared using quantities of litter comparable to those estimated for natural stands of Justicia. At these concentrations, seed germination and transplant growth were unaffected, but seedling growth was inhibited. When Polygonum was tested with lower concentrations of Justicia leachate, germination was still unaffected, but seedling growth was found to be enhanced, especially at the lowest concentrations. Using mannitol as an inert osmotic agent, Polygonum seedling growth was found to be inhibited at osmotic potentials equivalent to those of all leachate concentrations. Thus, the effects of leachate on seedling growth include both osmotic and non-osmotic components. Overall, the results support the hypothesis that the seedling stage of the plant life cycle is the stage most susceptible to permanent effects by the chemicals released from decomposing litter.  相似文献   

14.
Oxalic acid secretion from roots is considered to be an important mechanism for aluminum (Al) resistance in buckwheat (Fygopyrum esculentum Moench). Nonetheless, only a single Al-resistant buckwheat cultivar was used to investigate the significance of oxalic acid in detoxifying Al. In this study, we investigated two buckwheat cultivars, Jiangxi (Al resistant) and Shanxi (Al sensitive), which showed significant variation in their resistance to Al stress. In the presence of 0 to 100 microM Al, the inhibition of root elongation was greater in Shanxi than that in Jiangxi, and the Al content of root apices (0-10 mm) was much lower in Jiangxi. However, the dependence of oxalic acid secretion on external Al concentration and the time course for secretion were similar in both cultivars. Furthermore, the variation in Al-induced oxalic acid efflux along the root was similar, showing a 10-fold greater efflux from the apical 0- to 5-mm region than from the 5- to 10-mm region. These results suggest that both Shanxi and Jiangxi possess an equal capacity for Al-dependent oxalic acid secretion. Another two potential Al resistance mechanisms, i.e. Al-induced alkalinization of rhizosphere pH and root inorganic phosphate release, were also not involved in their differential Al resistance. However, after longer treatments in Al (10 d), the concentrations of phosphorus and Al in the roots of the Al-resistant cultivar Jiangxi were significantly higher than those in Shanxi. Furthermore, more Al was localized in the cell walls of the resistant cultivar. All these results suggest that while Al-dependent oxalic acid secretion might contribute to the overall high resistance to Al stress of buckwheat, this response cannot explain the variation in tolerance between these two cultivars. We present evidence suggesting the greater Al resistance in buckwheat is further related to the immobilization and detoxification of Al by phosphorus in the root tissues.  相似文献   

15.
The relationship between root Al concentrations and Al fractions in the soil solution was examined in a mature Abies amabilis ecosystem in the Cascade Range of Washington State. The naturally acidic soils in these ecosystems lead to high concentrations of aqueous Al in soil solutions and contribute to the biocycling of Al by the A. amabilis/T. mertensiana stand. Root concentrations of Al were very closely related to aqueous Al3+ activities, but poorly correlated with total aqueous Al concentrations. The solution Al/Ca molar ratios followed a seasonal cycle with low values during the fall and high values during the spring. Ratios remained <1 throughout the year in the Oa horizon while they varied between 2 and 14 in the E and Bhs horizons. The vertical distribution of roots and the mortality of fine roots may be linked to the soil solution Al/Ca ratio. Root cation exchange capacity ranged between 180 and 225 mol g-1 and the exchangeable Al fraction represented from 12–17% of the total Al content in the root. Evidence for solid-phase co-precipitates of Al with PO4 and oxalate was indicated from selective dissolution of the root tissue. Sufficient quantities of PO4 and oxalate exist in the roots to tie up 20–40% of the Al present in the roots of the Oa and E horizons, but only 9% of that present in the Bhs horizon. Species differences in the distribution of Al between the above-ground and below-ground components may be dictated by these retention processes in the fine roots.  相似文献   

16.
Aluminum (Al) toxicity is a major constraint for wheat production in acidic soils. An Al resistance gene on chromosome 4DL that traces to Brazilian wheat has been extensively studied, and can provide partial protection from Al damage. To identify potentially new sources of Al resistance, 590 wheat accessions, including elite wheat breeding lines from the United States and other American and European countries, landraces and commercial cultivars from East Asia, and synthetic wheat lines from CIMMYT, Mexico, were screened for Al resistance by measuring relative root elongation in culture with a nutrient solution containing Al, and by staining Al-stressed root tips with hematoxylin. Eighty-eight wheat accessions demonstrated at least moderate resistance to Al toxicity. Those selected lines were subjected to analysis of microsatellite markers linked to an Al resistance gene on 4DL and a gene marker for the Al-activated malate transporter (ALMT1) locus. Many of the selected Al-resistant accessions from East Asia did not have the Al-resistant marker alleles of ALMT1, although they showed Al resistance similar to the US Al-resistant cultivar, Atlas 66. Most of the cultivars derived from Jagger and Atlas 66 have the Al-resistant marker alleles of ALMT1. Cluster analysis separated the selected Al-resistant germplasm into two major clusters, labeled as Asian and American–European clusters. Potentially new germplasm of Al resistance different from those derived from Brazil were identified. Further investigation of Al resistance in those new germplasms may reveal alternative Al-resistance mechanisms in wheat. Electronic supplementary material The online version of this article (doi:contains supplementary material, which is available to authorized users. Responsible Editor: Thomas B. Kinraide.  相似文献   

17.
A series of hydroponic experiments and an agar culture experiment were carried out to investigate aluminum (Al) accumulation and translocation in two rice (Oryza sativa L.) cultivars (Kasalath and Koshihikari) that differ in Al resistance. Al-resistance mechanisms, including Pi exudation under Al stress and pH shifts in the rhizosphere, were also studied. Al content in rice shoots was 41 mg kg−1 on average and did not differ between the two cultivars, which demonstrated that the rice cultivars were not Al accumulators. The majority of Al (95–97%) accumulated in roots. Al content in roots in the resistant cultivar (Koshihikari) was lower than that in the sensitive cultivar (Kasalath), which indicated that Al-exclusion mechanisms were mainly acting in rice. However, the rate of Pi exudation from the whole root or root tips was very low in both cultivars and was not significantly influenced by Al exposure, and thus seemed not to be the main Al-resistance mechanism. On the other hand, experiments with pH-buffered solution and color changes following culture in agar medium containing bromocresol purple revealed that the Al-induced pH increase could not explain the high Al resistance of rice. In addition, the Al content in shoots of Koshihikari was lower after the formation of iron plaque on the root surface, whereas that of Kasalath was not lower. These results suggested that rice roots cell wall components or root surfaces such as iron plaque, rather than pH changes and/or root exudates including organic acids and phosphate, play important roles in Al resistance in rice.  相似文献   

18.
植物的根系分泌物是植物根系与周围环境之间的化学媒介,通过传递特定的信息,调节根际微环境,影响周围植物的生长。玉米(Zea mays L.)和荞麦(Fagopyrum esculentum Moench)是农作物间套作体系中典型的不能搭配的组合,其障碍因素尚不清楚。以玉米为受体植物,采用根悬空培养的方法,研究了荞麦、高粱(Sorghum bicolor(L.) Moench)根系分泌物对玉米根边缘细胞和根生长的影响。结果发现,玉米根边缘细胞离体培养条件下,用荞麦根系分泌物中的小分子物质处理4、8 h显著诱导边缘细胞凋亡、死亡,细胞活率分别比对照降低了71.6%和72.3%;荞麦根系分泌物中的小分子物质对玉米根产生氧化胁迫,诱导根SOD、POD和CAT活性分别比对照高22.6%、33.9%和107.2%,根中超氧阴离子(O2)和脯氨酸含量分别比对照高33.9%和49.8%;荞麦根系分泌物中小分子物质的胁迫使根细胞膜透性增大,与对照相比升高80.0%,丙二醛(MDA)含量比对照升高31.5%;荞麦根系分泌物中小分子物质诱导根内源激素(IAA)含...  相似文献   

19.
The aluminum (Al) tolerance of saffron (Crocus sativus L.) in hydroponics and the method of improving Al tolerance were investigated. Compared with the Al-free control, saffron root elongation was decreased by 59.3 and 75% at 0.05 and 0.2 mM Al stress, respectively. At 0.5 mM Al stress, the root elongation was inhibited completely. Addition of 1 mM polyamines improved saffron root growth markedly at 0.2 mM Al stress. Putrescine (Put) showed better amelioration effect than spermidine (Spd) and spermine (Spm). The root elongation in Put treatment was only 15% lower than that of Al-free control. The alleviation of Al rhizotoxicity by polyamines might be attributed to lower Al content in the root tips, and subsequent less lipid peroxidation and oxidative stress. Higher activities of amine oxidases and Hydrogen peroxide (H2O2) content might decrease the effects of Spd and Spm on alleviating oxidative damage compared with that of Put.  相似文献   

20.
Wheat (Triticum aestivum L.) seedlings were grown for 4 days in an acid soil horizon treated with 10 levels each of Ca(OH)2, CaSO4 and CaCl2. The treatments resulted in a wide range of Al levels and Al speciation in soil solution. Seedling root length in the Ca(OH)2 treatments was significantly related (p<0.01) to calculated Al3+ activity in soil solution. The Al–SO4 complex in soil solution had a negligible effect on the root growth of Hart wheat, thus confirming the previously reached conclusion concerning the nonphytotoxicity of Al–SO4. The short-term seedling root growth technique used in this investigation allowed for separation of Al effects on root elongation from those on plant nutrition and should be useful for studying Al toxicity relationships in soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号