首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Why cross-species transmissions of zoonotic viral infections to humans are frequently associated with severe disease when viruses responsible for many zoonotic diseases appear to cause only benign infections in their reservoir hosts is unclear. Sooty mangabeys (SMs), a reservoir host for SIV, do not develop disease following SIV infection, unlike nonnatural HIV-infected human or SIV-infected rhesus macaque (RM) hosts. SIV infections of SMs are characterized by an absence of chronic immune activation, in association with significantly reduced IFN-α production by plasmacytoid dendritic cells (pDCs) following exposure to SIV or other defined TLR7 or TLR9 ligands. In this study, we demonstrate that SM pDCs produce significantly less IFN-α following ex vivo exposure to the live attenuated yellow fever virus 17D strain vaccine, a virus that we show is also recognized by TLR7, than do RM or human pDCs. Furthermore, in contrast to RMs, SMs mount limited activation of innate immune responses and adaptive T cell proliferative responses, along with only transient antiviral Ab responses, following infection with yellow fever vaccine 17D strain. However, SMs do raise significant and durable cellular and humoral immune responses comparable to those seen in RMs when infected with modified vaccinia Ankara, a virus whose immunogenicity does not require TLR7/9 recognition. Hence, differences in the pattern of TLR7 signaling and type I IFN production by pDCs between primate species play an important role in determining their ability to mount and maintain innate and adaptive immune responses to specific viruses, and they may also contribute to determining whether disease follows infection.  相似文献   

2.
Host innate immunity plays a central role in detecting and eliminating microbial pathogenic infections in both vertebrate and invertebrate animals. Entomopathogenic or insect pathogenic nematodes are of particular importance for the control of insect pests and vectors of pathogens, while insect-borne nematodes cause serious diseases in humans. Recent work has begun to use the power of insect models to investigate host-nematode interactions and uncover host antiparasitic immune reactions. This review describes recent findings on innate immune evasion strategies of parasitic nematodes and host cellular and humoral responses to the infection. Such information can be used to model diseases caused by human parasitic nematodes and provide clues indicating directions for research into the interplay between vector insects and their invading tropical parasites.  相似文献   

3.
Sphingosine-1-phosphate (S1P) has long been recognized as a mediator of a variety of cell functions. A growing body of evidence has accumulated demonstrating its role in cell migration and as a mediator of growth factor-induced events. In recent years, it has become apparent that S1P also mediates many cytokine and chemokine functions. Cells of the immune system function and migrate in response to a complex network of cytokines and chemokines, and the outcome is determined by the interplay of the effects of these molecules on the target cell. S1P may be a bona fide component of these networks and influence the responses of cells to these immune modulators.  相似文献   

4.
Membrane microparticles (MMP) released from apoptotic cells deliver signals that secure the anti-inflammatory response beyond the nearest proximity of the apoptotic cell. Plasmacytoid dendritic cells (pDC) are sentinels prepared to detect cellular processes that endanger the organism. They play a key role in the regulation of both pro- and anti-inflammatory immune responses. Based on the assumption that pDC could participate in the initiation of the anti-inflammatory response to apoptotic cells, we investigated the effects of apoptotic cell-derived MMP on human pDC. The results obtained in our experiments confirmed that MMP released from apoptotic cells trigger IFN-α secretion from human pDC. They further suggest that pDC activation results from sensing of DNA contained in MMP. MMP-DNA displays a particularly strong stimulatory activity compared with MMP-RNA and other sources of DNA. Inhibition of MMP-induced IFN-α secretion by cytochalasin D, chloroquine, and an inhibitory G-rich oligodeoxynucleotide identify TLR9 as the receptor for MMP-DNA. In marked contrast to the pDC response in autoimmune patients, in healthy subjects MMP-mediated stimulation of pDC-derived IFN-α was found to be independent of FcγRIIA (CD32A). Based on our findings, we conclude that induction of pDC-derived IFN-α by MMP is a physiological event; future investigations are necessary to elucidate whether pDC activation promotes inflammation or propagates tolerance in the context of apoptotic cell clearance.  相似文献   

5.
We have developed small peptide mimetics of IFN-gamma that can bypass the poxvirus virulence factor B8R protein, which binds to intact IFN-gamma and prevents its interaction with receptor extracellular domain. Thus, these peptides inhibit vaccinia virus replication in cell culture where intact IFN-gamma is ineffective. We demonstrate here that the mouse IFN-gamma-mimetic peptide, IFN-gamma(95-132), protects C57BL/6 mice against overwhelming lethal vaccinia virus infection. The mimetic peptide was synthesized with an attached lipophilic group for penetration of cell plasma membrane. Injection of mimetic i.p. before and at the time of intranasal (10(6) PFU) or i.p. (10(7) PFU) challenge with virus resulted in complete protection at 200 microg of mimetic and 40-60% protection at 5 microg of mimetic. Initiation of treatment of mice with IFN-gamma mimetic up to 2 days postinfection resulted in complete protection against death, whereas initiation of treatment at 6 days postinfection resulted in 40% protection. Administration of mimetic by the oral route also completely protected mice against the intranasal route of a lethal dose of vaccinia virus challenge. In addition to its direct antiviral effect, the mimetic also possessed adjuvant effects in boosting humoral and cellular immunity to vaccinia virus. The combination of antiviral and adjuvant effects by the IFN mimetic probably plays a role in its potent anti-vaccinia virus properties. These results suggest an effective therapeutic against ongoing, lethal poxvirus infections that taps into innate and adaptive host defenses.  相似文献   

6.
Type I interferon (IFN) signalling, NK cells and NK cell-derived IFN-γ are critical in the early control of genital HSV-2 infection. We have recently reported that NK cells are the source of early IFN-γ in the genital tract in response to HSV-2. However, the response of NK cells to genital HSV-2 infection is not well defined in the context of type I IFN signalling. Here we show that HSV-2 replication was significantly higher in mice deficient in the type I IFN receptor or NK cells compared to wild type controls. There was no detectable IFN-γ production in the genital washes from IFN-α/βR−/− mice or NK cell depleted mice in response to HSV-2 infection compared to control mice. Absence of the type I IFN receptor does not alter homing of NK cells to the genital mucosa. Moreover, the absence of IL-12 had no significant effect on NK cell-derived IFN-γ. Surprisingly, IFN-α/βR−/− mice had more IL-15 positive cells in the genital mucosa in response to HSV-2 infection compared to control mice. We then examined the expression of IL-15 receptors on NK cells. There was no significant differences in the levels of IL-15 receptor expression on NK cells from IFN-α/βR−/− or control mice. Our data clearly suggest that type I IFN receptor signalling is essential for NK cell activation in response to genital HSV-2 infection, and propose that NK cell activation by IL-15 may involve type I IFNs.  相似文献   

7.
8.
9.
During cognate interaction with CD40 ligand (CD154)-expressing T cells, Ag-presenting accessory cells are activated for increased cytokine synthetic and costimulatory function. We examined whether CD40 modulates in vivo innate immune function over time, hypothesizing that distinct cytokine responses evolve to delayed microbial exposure. C3H/HeN mice pretreated with activating anti-CD40 Ab (FGK45) produced 10-fold more serum IFN-gamma and IL-12 p70 to delayed, but not synchronous, challenge with LPS. A novel finding was that LPS-induced IFN-alpha increased by 20-fold in mice pretreated for 24 h, but not 6 h or less, with anti-CD40. Anti-CD40-pretreated C57BL/6 RAG-2(-/-) mice similarly increased IFN-alpha responses to delayed LPS challenge, confirming mediation by innate immunity. Type I IFNR- and IFN-gamma-deficient mice treated with anti-CD40 failed to expand serum IFN-alpha responses to LPS challenge. Combined pretreatment with anti-CD40 and anti-IFN-gamma mAb showed that IFN-gamma produced after anti-CD40 pretreatment, but before LPS challenge, was necessary for IFN-alpha synthetic enhancement. Anti-CD40 also increased polyinosinic-polycytidylic acid (poly(I:C))-inducible IFN-alpha by 5-fold in an IFN-gamma-dependent fashion, but did not significantly increase IFN-alpha production to CpG or Pam(3)Cys challenges. Poly(IC)-stimulated splenocytes from anti-CD40-pretreated mice produced 4-fold more IFN-alpha than controls and production associated with CD11c(+) cells. Finally, rIFN-gamma and anti-CD40 combined synergistically to increase poly(IC)-inducible IFN-alpha synthetic capacity in bone marrow dendritic cells. We conclude that innate immune production of IFN-alpha is cooperatively regulated by CD40 and IFN-gamma acting on dendritic cells, suggesting a unique mechanism by which innate immune function evolves in response to specific adaptive immune signals.  相似文献   

10.
Type I IFN (IFN-alphabeta) is induced rapidly by infection and plays a key role in innate antiviral defense. IFN-alphabeta also exerts stimulatory effects on the adaptive immune system and has been shown to enhance Ab and T cell responses. We have investigated the importance of B and T cells as direct targets of IFN-alphabeta during IFN-alpha-mediated augmentation of the Ab response against a soluble protein Ag. Strikingly, the ability of IFN-alpha to stimulate the Ab response and induce isotype switching was markedly reduced in mice in which B cells were selectively deficient for the IFN-alphabetaR. Moreover, IFN-alpha-mediated enhancement of the Ab response was also greatly impaired in mice in which T cells were selectively IFN-alphabetaR-deficient. These results indicate that IFN-alphabetaR signaling in both B and T cells plays an important role in the stimulation of Ab responses by IFN-alphabeta.  相似文献   

11.
Holgate ST 《Nature medicine》2012,18(5):673-683
The recognition that asthma is primarily an inflammatory disorder of the airways associated with T helper type 2 (T(H)2) cell-dependent promotion of IgE production and recruitment of mast cells and eosinophils has provided the rationale for disease control using inhaled corticosteroids and other anti-inflammatory drugs. As more has been discovered about the cytokine, chemokine and inflammatory pathways that are associated with T(H)2-driven adaptive immunity, attempts have been made to selectively inhibit these in the hope of discovering new therapeutics as predicted from animal models of allergic inflammation. The limited success of this approach, together with the recognition that asthma is more than allergic inflammation, has drawn attention to the innate immune response in this disease. Recent advances in our understanding of the sentinel role played by innate immunity provides new targets for disease prevention and treatment. These include pathways of innate stimulation by environmental or endogenous pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs) to influence the activation and trafficking of DCs, innate sources of cytokines, and the identification of new T cell subsets and lymphoid cells.  相似文献   

12.
Although elevation of the blood glucose level is a causal adverse effect of treatment with interferon (IFN), the precise underlying molecular mechanism is largely unknown. We examined the effects of type I and type II IFN (IFN-β and IFN-γ) on insulin-induced metabolic signaling leading to glucose uptake in 3T3-L1 adipocytes. IFN-β suppressed insulin-induced tyrosine phosphorylation of IRS-1 without affecting its expression, whereas IFN-γ reduced both the protein level and tyrosine phosphorylation. Although both IFNs stimulated phosphorylation of STAT1 (at Tyr(701)) and STAT3 (at Tyr(705)) after treatment for 30 min, subsequent properties of induction of the SOCS isoform were different. IFN-β preferentially induced SOCS1 rather than SOCS3, whereas IFN-γ strongly induced SOCS3 expression alone. In addition, adenovirus-mediated overexpression of either SOCS1 or SOCS3 inhibited insulin-induced tyrosine phosphorylation of IRS-1, whereas the reduction of IRS-1 protein was observed only in SOCS3-expressed cells. Notably, IFN-β-induced SOCS1 expression and suppression of insulin-induced tyrosine phosphorylation of IRS-1 were attenuated by siRNA-mediated knockdown of STAT1. In contrast, adenovirus-mediated expression of a dominant-negative STAT3 (F-STAT3) attenuated IFN-γ-induced SOCS3 expression, reduction of IRS-1 protein, and suppression of insulin-induced glucose uptake but did not have any effect on the IFN-β-mediated SOCS1 expression and inhibition of insulin-induced glucose uptake. Interestingly, pretreatment of IFN-γ with IL-6 synergistically suppressed insulin signaling, even when IL-6 alone had no significant effect. These results indicate that type I and type II IFN induce insulin resistance by inducing distinct SOCS isoforms, and IL-6 synergistically augments IFN-γ-induced insulin resistance by potentiating STAT3-mediated SOCS3 induction in 3T3-L1 adipocytes.  相似文献   

13.
14.
IFN-kappa is a recently identified type I IFN that exhibits both structural and functional homology with the other type I IFN subclasses. In this study, we have investigated the effect of IFN-kappa on cells of the innate immune system by comparing cytokine release following treatment of human cells with either IFN-kappa or two recombinant IFN subtypes, IFN-beta and IFN-alpha2a. Although IFN-alpha2a failed to stimulate monocyte cytokine secretion, IFN-kappa, like IFN-beta, induced the release of several cytokines from both monocytes and dendritic cells, without the requirement of a costimulatory signal. IFN-kappa was particularly effective in inhibiting inducible IL-12 release from monocytes. Unlike IFN-beta, IFN-kappa did not induce release of IFN-gamma by PBL. Expression of the IFN-kappa mRNA was observed in resting dendritic cells and monocytes, and it was up-regulated by IFN-gamma stimulation in monocytes, while IFN-beta mRNA was minimally detectable under the same conditions. Monocyte and dendritic cell expression of IFN-kappa was also confirmed in vivo in chronic lesions of psoriasis vulgaris and atopic dermatitis. Finally, biosensor-based binding kinetic analysis revealed that IFN-kappa, like IFN-beta, binds strongly to heparin (K(d): 2.1 nM), suggesting that the cytokine can be retained close to the local site of production. The pattern of cytokines induced by IFN-kappa in monocytes, coupled with the unique induction of IFN-kappa mRNA by IFN-gamma, indicates a potential role for IFN-kappa in the regulation of immune cell functions.  相似文献   

15.
Protective immunity against a variety of infections depends on the amplification and differentiation of rare na?ve antigen-specific CD4 and CD8 T cells. Recent evidence indicates that the clonotypic composition of the responding T-cell compartment has a critical role in the immune defense against pathogens. The present review compares and contrasts how naive CD4 and CD8 T cells recognize their cognate antigen, and discusses the factors that regulate the genesis and maintenance of the CD4 and CD8 T-cell receptor repertoire diversity.  相似文献   

16.
IRF7 is known as the master regulator in virus-triggered induction of type I IFNs (IFN-I). In this study, we identify GBP4 virus-induced protein interacting with IRF7 as a negative regulator for IFN-I response. Overexpression of GBP4 inhibits virus-triggered activation of IRF7-dependent signaling, but has no effect on NF-κB signaling, whereas the knockdown of GBP4 has opposite effects. Furthermore, the supernatant from Sendai virus-infected cells in which GBP4 have been silenced inhibits the replication of vesicular stomatitis virus more efficiently. Competitive coimmunoprecipitation experiments indicate that overexpression of GBP4 disrupts the interactions between TRAF6 and IRF7, resulting in impaired TRAF6-mediated IRF7 ubiquitination. Our results suggest that GBP4 is a negative regulator of virus-triggered IFN-I production, and it is identified as a novel protein targeting IRF7 and inhibiting its function.  相似文献   

17.
丙型肝炎病毒(Hepatitis C Virus,HCV)是慢性丙型病毒性肝炎的主要病因,也是引发肝硬化和肝癌的主要诱因。在HCV感染过程中,伴随着干扰素信号通路的激活和干扰素刺激基因(IFN-stimulated gene,ISG)的持续表达,且有HCV独特的免疫逃逸和免疫细胞的功能损伤。现就HCV感染过程中机体的固有免疫反应和适应性免疫反应的研究进展作一综述。  相似文献   

18.
The maintenance of peripheral tolerance is largely based on thymus-derived CD4+CD25+ naturally occurring regulatory T cells (Tregs). While on the one hand being indispensable for the perpetuation of tolerance to self-antigens, the immune suppressive properties of Tregs contribute to cancer pathogenesis and progression. Thus, modulation of Treg function represents a promising strategy to support tumor eradication in immunotherapy of cancer. Here, we discuss potential therapeutic applications of our observation that Tregs contain high concentrations of the second messenger cyclic adenosine monophosphate, which is transferred from Tregs via gap junctions to suppress the function of T cells and dendritic cells.  相似文献   

19.
《Neuron》2023,111(2):236-255.e7
  1. Download : Download high-res image (229KB)
  2. Download : Download full-size image
  相似文献   

20.
This study relates to a novel mediator signaling between the nervous system and the spleen following an immune challenge. Using enzyme-linked immunospot and cell proliferation assays, we found that supernatants of cultured splenocytes prepared from subcutaneously trypanosome-inoculated rats and mice spleens obtained immediately after inoculation and added to naive cells significantly stimulate interferon-gamma production and cell proliferation compared to phosphate-buffered saline-inoculated animals. This action was abrogated by surgical denervation of the spleen. Using the fluorescent differential display technology, the gene involved in this process was identified and further cloned and its sequence was mapped to chromosome 14 (GenBank accession number: EU552928). Protein expression revealed approximately 15 kDa molecule with biological activities similar to the cultured supernatants of splenocytes obtained directly from parasite-inoculated animals. Antibodies raised against the protein blocked the activities of both the protein and the supernatant and also recognized a band in the active supernatant with the same molecular mass as the protein. Furthermore, the protein was able to reactivate experimentally immunosuppressed cells by regaining their ability to proliferate, suggesting that such a nervous system-induced immune system-released activating agent (ISRAA) may have a potential therapeutic benefit in immunocompromised situations and in further understanding the mechanism for innate immunity commencement and action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号