首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated whether the development of spatial behaviour of the domestic chicken is influenced by light exposure of the embryo, as is known to be the case for some other lateralized visual functions. Ninety-six chicks were incubated in the dark or exposed to light during the final days of incubation. Half of the chicks in each group had the experience of moving behind opaque screens from 10 to 12 days of age. The other half were given transparent screens as a control. Chicks were tested in a detour test and a rotated floor test and their dispersal in groups was observed in larger pens. In the rotated floor test, chicks that had had experience with opaque screens used distal cues significantly more often than chicks that had experience with transparent screens (P = 0.042), regardless of whether they had been exposed to light before hatching or incubated in the dark. There were no significant differences between treatments in the detour test or in the dispersal behaviour. Hence, visual lateralization has no influence on the development of the spatial behaviour that we tested, whereas the occlusion experience is quite specific and results in shifted attention to distal spatial cues.  相似文献   

2.
The use of mobile robots is an effective method of validating sensory–motor models of animals in a real environment. The well-identified insect sensory–motor systems have been the major targets for modeling. Furthermore, mobile robots implemented with such insect models attract engineers who aim to avail advantages from organisms. However, directly comparing the robots with real insects is still difficult, even if we successfully model the biological systems, because of the physical differences between them. We developed a hybrid robot to bridge the gap. This hybrid robot is an insect-controlled robot, in which a tethered male silkmoth (Bombyx mori) drives the robot in order to localize an odor source. This robot has the following three advantages: 1) from a biomimetic perspective, the robot enables us to evaluate the potential performance of future insect-mimetic robots; 2) from a biological perspective, the robot enables us to manipulate the closed-loop of an onboard insect for further understanding of its sensory–motor system; and 3) the robot enables comparison with insect models as a reference biological system. In this paper, we review the recent works regarding insect-controlled robots and discuss the significance for both engineering and biology.  相似文献   

3.
ObjectiveThe aim of the present study was to investigate the effects of repeated thermal conditioning (RTC) at an early age on physiological and behavioral responses in chicks.MethodsBirds were assigned to one of the four treatments in which the RTC was exposure to 40 °C for 15 min daily. The treatments were 1) no thermal conditioning (control); 2) early exposure group (EE; RTC from 2 to 4 days of age); 3) later exposure group (LE; RTC from 5 to 7 days of age); or 4) both early and later exposure (BE; RTC from 2 to 7 days of age). All groups of chicks were challenged with high ambient temperature (40 °C for 15 min) at two weeks of age.ResultsDuring heat challenge, initiation times of dissipation behaviors (panting and wing-drooping) were measured. Rectal temperature and respiration rate were measured after and before heat challenge. Hypothalamic samples and blood were collected at the end of heat challenges. Initiation times of dissipation behaviors and rectal temperature were not affected by the treatments. Increases in respiration rate in response to heat challenge were suppressed by early RTC treatment. There was no clear pattern of glucose levels in relation to thermal conditioning, whereas plasma corticosterone levels were decreased by early treatment (EE and BE groups). Hypothalamic thyrotropin releasing hormone gene expression was suppressed by early and later thermal conditioning and suppressed further by both early and later exposure. Neuropeptide Y gene expression in the BE group was lower than in the other groups, with a similar trend for corticotropin releasing hormone expression.ConclusionOur results suggest that the effect of repeated thermal conditioning on the central thermoregulatory system depends on the number of times that chicks experienced conditioning. In addition, repeated thermal conditioning has greater effects on the acquisition of thermotolerance when conditioning occurs in chicks of two to four days of age in comparison with chicks of five to seven days of age.  相似文献   

4.
At around day 11 of life, domestic chicks show a tendency to move out of sight of their mother before returning and regaining social and visual contact. We conducted a series of experiments to investigate the role of this voluntary ‘out-of-sight’ behaviour on the development of spatial memory in young chicks. We compared the behaviour of chicks that were reared in environments that provided opportunities to move out of sight of an imprinting stimulus (occlusion-experienced chicks) with the behaviour of chicks that were given minimal occlusion experience (controls). As in natural conditions, out-of-sight behaviour peaked on day 11. When chicks were released into larger pens at 14 days of age, occlusion-experienced chicks walked more than control chicks, but otherwise showed similar degrees of dispersal. Occlusion-experienced chicks tended to show better (although not significant, P=0.09) retrieval of a visually displaced imprinting stimulus than control chicks. Time spent out of sight in the rearing pens was negatively related to the number of orientation errors in a detour test. Occlusion-experienced chicks also tended to make fewer orientation errors in the first trial (P=0.07) and in subsequent trials (P=0.05). In contrast, experimentally manipulating the amount of time that chicks were out of sight of an imprinting stimulus (by confining the chicks) had no effect on their performance in displacement or detour tests. The results presented here suggest that active experience of occlusion around day 11 improved egocentric orientation towards an out-of-sight goal, supporting the hypothesis that enrichment-induced behavioural changes are dependent on the interaction with objects.  相似文献   

5.
A ground-nesting gull or tern (Laridae) parent will attack a foreign conspecific chick that is substituted for the parent's chick at about the time the parent's chick is mobile. Presumably, parents discriminate among chicks using some combination of vocal, morphologic, and behavior cues. It is not known which cues are used. Morphologic variation in chicks' down potentially provides discrimination cues in some species of Laridae, such as the Caspian tern (Sterna caspia). To test discrimination based on the down color of chicks, a parent's chick was replaced sequentially with foreign conspecific chicks that were similar and dissimilar to the down color of the parent's chick. This cue-isolation experiment indicated that parents rejected dissimilar chicks more frequently. Thus, parents learn the down color of their chicks and then use this information as a basis for aggressive rejection of foreign chicks. A recognition system based on morphology allows parents to detect and reject foreign chicks with a probability greater than chance.  相似文献   

6.
The function of ultradian rhythms is not yet clearly elucidated. In particular, short-term rhythms are expressed during early ontogeny, especially in broods of precocial birds. We investigated the relationship between the clarity of the ultradian rhythm of the activity/rest cycle of a group of young Japanese quail (Coturnix japonica) and the level of social synchronisation and spatial cohesion between the birds within that group. The subjects were descended from two lines selected for either very pronounced rhythmic or arrhythmic circadian activity. We found a positive relationship between the clarity of the ultradian rhythm of the activity/rest cycle when birds were young and the clarity of the circadian rhythm of feeding activity when birds were older, but still immature. The temporal organisation of the behaviour of the chicks from these two lines was observed in outdoor aviaries, when they were 4, 8, 12 and 15 days old. The mean ultradian period expressed by groups of 12 chicks was variable, with a minimum of 6 minutes. The ultradian period lengthened regularly as chicks grew older, and reached approximately 40 min on day 15. The clarity of the ultradian rhythmicity of group activity was linked to the level of inter-individual social synchronisation and of spatial cohesion; the more pronounced the ultradian rhythms of a group, the greater the temporal and spatial cohesion of the chicks within the group. Moreover, these characteristics varied with the age of the chicks. Finally, chicks in the less rhythmic groups weighed less. These results stress the adaptive value of this temporal organisation strategy under natural conditions.  相似文献   

7.
According to our results, chicks of the Japanese quail can survive within the first 10 days of a life under conditions of the limited volume when their mobility is completely limited. However, their development was impaired in comparison with chicks housed in the common cages. Besides, the delay in development of chick's plumage has been observed. The analysis of body mass in test groups has shown that practically all chicks were smaller than chicks from control group. It is the result of feed consumption decrease (about 30% from control group) caused by the restriction of mobility of chicks. But after their transferring to the common cages at the end of the experiment, body mass in test group rapidly reached the level of body mass in control group. Research has shown that percent of alive of quail chicks maintained in the chamber of animals of complex "Incubator-2", was higher than in first two experiments. Therefore, works on improvement of devices for the maintenance of quail chicks continue, and also new adaptations develop for the maintenance of chicks in their early post-embryonic period (till 10 days) with reference to conditions of weightlessness.  相似文献   

8.
The function of ultradian rhythms is not yet clearly elucidated. In particular, short-term rhythms are expressed during early ontogeny, especially in broods of precocial birds. We investigated the relationship between the clarity of the ultradian rhythm of the activity/rest cycle of a group of young Japanese quail (Coturnix japonica) and the level of social synchronisation and spatial cohesion between the birds within that group. The subjects were descended from two lines selected for either very pronounced rhythmic or arrhythmic circadian activity. We found a positive relationship between the clarity of the ultradian rhythm of the activity/rest cycle when birds were young and the clarity of the circadian rhythm of feeding activity when birds were older, but still immature. The temporal organisation of the behaviour of the chicks from these two lines was observed in outdoor aviaries, when they were 4, 8, 12 and 15 days old. The mean ultradian period expressed by groups of 12 chicks was variable, with a minimum of 6 minutes. The ultradian period lengthened regularly as chicks grew older, and reached approximately 40 min on day 15. The clarity of the ultradian rhythmicity of group activity was linked to the level of inter-individual social synchronisation and of spatial cohesion; the more pronounced the ultradian rhythms of a group, the greater the temporal and spatial cohesion of the chicks within the group. Moreover, these characteristics varied with the age of the chicks. Finally, chicks in the less rhythmic groups weighed less. These results stress the adaptive value of this temporal organisation strategy under natural conditions.  相似文献   

9.
Abstract.  The northern fowl mite, Ornithonyssus sylviarum , is an ectoparasite of birds and a poultry pest. The ability of northern fowl mites to orientate to a heat source is investigated with individual mites video-recorded in two-dimensional arenas and exposed to spatial or temporal heat gradients. Recorded tracks are digitally analysed for variation in linear velocity, mean direction of movement, and patterns in angular displacement. Mean direction of movement in a spatial gradient is significantly associated with the position of the heat source for 24/29 mites tested ( P  < 0.05), whereas most control (no heat) mean bearings are randomly distributed (16/25; P  > 0.1). Angular displacement that orientates a mite towards the heat source is positively correlated with the preceding deviation from that direction ( P  < 0.01). Angular displacement away from the heat source is random. The temporal heat gradient is such that no spatial reference to the heat source exists within the plane of the arena. Mites in an ambient (27 °C) to heated (30 °C) transition have angular displacement distributions similar to control mites (ambient to ambient transition). However, mites in a heated to ambient transition execute angular displacements approximately 25° greater than mites in the other treatments ( P  < 0.03). Mites compare the shift in temperature over time and alter their direction of movement by a programmed (idiothetic) response to a decrease in temperature, rather than through detection of the spatial position of the gradient (allothetic).  相似文献   

10.
Little is known about the navigational abilities of domestic fowl. The question of how chickens represent and orient in space becomes relevant when they are kept in non-cage systems. Since the sun is known to be the dominant spatial organiser in other diurnal bird species, we started our investigation of the chicken’s spatial abilities by subjecting them to a food-searching task with the sun as the only consistent visual cue. In an additional experiment we tried to rule out the use of auditory cues in finding a food reward.

Eight ISA Brown chicks were housed in outdoor pens. A separate test arena comprised an open-topped, opaque-sided wooden octagon (2 m wide and 1.5 m high). Eight goal boxes with food pots were attached to each of the arena sides; a wooden barrier inside each goal box prevented the birds from seeing the food pot before entering. After habituation we tested during five daily 5 min trials whether the chicks were able to find food in a systematically allocated goal direction. Food residue in every foot pot controlled for the use of olfactory cues and no external landmark cues were visible. Every day each box was unpredictably moved to a randomly assigned side of the arena and the side to face north was also randomly allocated, to prevent the chicks from using cues other than the sun’s position. Circular statistics were used to determine whether birds moved in a non-random direction and if so, if they significantly oriented goalwards. The results showed that seven of the eight birds moved significantly in the goal direction. It seems likely that the chicks used the sun to orient. Due to weather constraints only four chicks received the same treatment on a new location, to rule out the use of auditory cues. Two of these four chicks significantly moved in the goal direction.

The results from our experiments show that domestic chicks use spatial memory to orient towards a hidden goal. Moreover, their orientation is most likely to be based on sun cues opening up the possibility that the sun compass may dominate even in this ancestrally predominantly ground-living forest bird.  相似文献   


11.
The simultaneous optimization of a robot structure and control system to realize effective mobility in an outdoor environment is investigated. Recently, various wheeled mechanisms with passive and/or active linkages for outdoor environments have been developed and evaluated. We developed a mobile robot having six active wheels and passive linkage mechanisms, and experimentally verified its maneuverability in an indoor environment. However, there are various obstacles in outdoor environment and the travel ability of a robot thus depends on its mechanical structure and control system.We proposed a method of simultaneously optimizing mobile robot structure and control system using an evolutionary algorithm. Here, a gene expresses the parameters of the structure and control system. A simulated mobile robot and controller are based on these parameters and the behavior of the mobile robot is evaluated for three typical obstacles. From the evaluation results, new genes are created and evaluated repeatedly. The evaluation items are travel distance, travel time, energy consumption, control accuracy, and attitude of the robot.Effective outdoor travel is achieved around the 80th generation, after which, other parameters are optimized until the 300th generation. The optimized gene is able to pass through the three obstacles with low energy consumption, accurate control, and stable attitude.  相似文献   

12.
This paper presents the development of a mesoscale self-contained quadruped mobile robot that employs two pieces ofpiezocomposite actuators for the bounding locomotion.The design of the robot leg is inspired by legged insects and animals,and the biomimetic concept is implemented in the robot in a simplified form,such that each leg of the robot has only one degreeof freedom.The lack of degree of freedom is compensated by a slope of the robot frame relative to the horizontal plane.For theimplementation of the self-contained mobile robot,a small power supply circuit is designed and installed on the robot.Experimentalresults show that the robot can locomote at about 50 mm·s-1with the circuit on board,which can be considered as asignificant step toward the goal of building an autonomous legged robot actuated by piezoelectric actuators.  相似文献   

13.
We present a system for sensorimotor audio-visual source localization on a mobile robot. We utilize a particle filter for the combination of audio-visual information and for the temporal integration of consecutive measurements. Although the system only measures the current direction of the source, the position of the source can be estimated because the robot is able to move and can therefore obtain measurements from different directions. These actions by the robot successively reduce uncertainty about the source’s position. An information gain mechanism is used for selecting the most informative actions in order to minimize the number of actions required to achieve accurate and precise position estimates in azimuth and distance. We show that this mechanism is an efficient solution to the action selection problem for source localization, and that it is able to produce precise position estimates despite simplified unisensory preprocessing. Because of the robot’s mobility, this approach is suitable for use in complex and cluttered environments. We present qualitative and quantitative results of the system’s performance and discuss possible areas of application.  相似文献   

14.
Cockroaches exploit tactile cues from their antennae to avoid predators. During escape running the same sensors are used to follow walls. We hypothesise that selection of these mutually exclusive behaviours can be explained without representation of the stimulus or an explicit switching mechanism. A neural model is presented that embodies this hypothesis. The model incorporates behavioural and neurophysiological data and is embedded in a mobile robot in order to test the response to stimuli in the real world. The system is shown to account for data on escape direction and high-speed wall-following in the cockroach, including the counter-intuitive observation that faster running cockroaches maintain a closer distance to the wall. The wall-following behaviour is extended to include discrimination of tactile escape cues according to behavioural context. We conclude by highlighting questions arising from the robot experiments that suggest interesting hypotheses to test in the cockroach.  相似文献   

15.
Domestic chicks are able to find a food goal at different times of day, with the sun as the only consistent visual cue. This suggests that domestic chickens may use the sun as a time-compensated compass, rather than as a beacon. An alternative explanation is that the birds might use the earth's magnetic field. In this study, we investigated the role of the sun compass in a spatial orientation task using a clock-shift procedure. Furthermore, we investigated whether domestic chickens use magnetic compass information when tested under sunny conditions.Ten ISA Brown chicks were housed in outdoor pens. A separate test arena comprised an open-topped, opaque-sided, wooden octagonal maze. Eight goal boxes with food pots were attached one to each of the arena sides. A barrier inside each goal box prevented the birds from seeing the food pot before entering. After habituation, we tested in five daily 5-min trials whether chicks were able to find food in an systematically allocated goal direction. We controlled for the use of olfactory cues and intra-maze cues. No external landmarks were visible. All tests were done under sunny conditions. Circular statistics showed that nine chicks significantly oriented goalwards using the sun as the only consistent visual cue during directional testing. Next, these nine chicks were subjected to a clock-shift procedure to test for the role of sun-compass information. The chicks were housed indoors for 6 days on a light-schedule that was 6 h ahead of the natural light–dark schedule. After clock-shifting, the birds were tested again and all birds except one were disrupted in their goalward orientation. For the second experiment, six birds were re-trained and fitted with a tiny, powerful magnet on the head to disrupt their magnetic sense. The magnets did not affect the chicks’ goalward orientation.In conclusion, although the strongest prediction of the sun-compass hypothesis (significant re-orientation after clock-shifting) was neither confirmed nor refuted, our results suggest that domestic chicks use the sun as a compass rather than as a beacon. These findings suggest that hens housed indoors in large non-cage systems may experience difficulties in orientation if adequate alternative cues are unavailable. Further research should elucidate how hens kept in non-cage systems orient in space in relation to available resources.  相似文献   

16.
In research on small mobile robots and biomimetic robots,locomotion ability remains a major issue despite many advances in technology.However,evolution has led to there being many real animals capable of excellent locomotion.This paper presents a "parasitic robot system" whereby locomotion abilities of an animal are applied to a robot task.We chose a turtle as our first host animal and designed a parasitic robot that can perform "operant conditioning".The parasitic robot,which is attached to the turtle,can induce object-tracking behavior of the turtle toward a Light Emitting Diode (LED) and positively reinforce the behavior through repeated stimulus-response interaction.After training sessions over five weeks,the robot could successfully control the direction of movement of the trained turtles in the waypoint navigation task.This hybrid animal-robot interaction system could provide an alternative solution to some of the limitations of conventional mobile robot systems in various fields,and could also act as a useful interaction system for the behavioral sciences.  相似文献   

17.
A synthetic analogue of a mother-hen odour named MHUSA (Mother Hen Uropygial Secretion Analogue) reduces stress-related behaviour in the chicken. We hypothesize that MHUSA may have an attractant effect on chicks. In order to test this, 30 chicks were individually exposed to MHUSA, placebo or neutral when self isolated in a straight shuttle box. The location of the chicks within the test chamber was recorded with 360 consecutive scan-sampled images. During the first three minutes immediately after introduction to the test area chicks spent more time in the neutral zone (p<0.05). However, taking the results from the total observation period, chicks spent more time in the MHUSA and placebo zones combined than in the neutral zone (p=0.07). They were more often observed in the MHUSA zone compared to the placebo zone (p<0.05). These results suggest that during the first three minutes in the shuttle, individuals were adapting to their new environment. After this period, chicks directed themselves towards specific local stimuli, as they tried to reach their group or something that resembled it. After a stressor was introduced, we observed a return to the same situation as during the first three minutes of the test, with chicks returning to the neutral zone, suggesting that the chick had its confidence in the environment. Three main conclusions may be drawn. Firstly, MHUSA has an attractant effect on na?ve chicks. Secondly, it appears to play a role in the reaction of chicks faced with a stressful event, and finally, the reaction to MHUSA seems innate and does not require previous experience.  相似文献   

18.
A 2×2 factorial experiment was conducted to determine the performance and certain physiological parameters of 200 day-old chicks fed diets containing either 2600 or 3000 kcal metabolizable energy (ME) per kilogram for a period of 28 days under conditions of brooding with or without supplemental heat in a hot humid tropical area. The results indicated that within each dietary energy level, there was no significant difference in growth rates of chicks brooded with or without supplemental heat, however, the high energy diet significantly (P<0.01) promoted greater weight gains than the low energy diet. Brooding chicks with supplemental heat and with the high energy diet, decreased feed intake and improved feed conversion efficiency. Chicks brooded without supplemental heat consumed significantly (P<0.01) less water than those brooded with heat, irrespective of the dietary energy level. Mortality and blood glucose levels were not affected by the heat and dietary energy treatments. Thyroid weight expressed as percentage of body weight, haemoglobin and hematocrit values were significantly (P<0.01) higher for chicks brooded without supplemental heat. On the other hand, dietary energy levels did not exert any effect on these physiological parameters. No significant heat and dietary energy level interaction effects were noted on all the parameters considered under this trial.  相似文献   

19.
An omnidirectional mobile robot has the advantage that three degrees of freedom of motion in a 2D plane can be set independently, and it can thus move in arbitrary directions while maintaining the same heading. Dead reckoning is often used for self-localization using onboard sensors in omnidirectional robots, by means of measuring wheel velocities from motor encoder data, as well as in car-like robots. However, omnidirectional mobile robots can easily slip because of the nature of omni-wheels with multiple free rollers, and dead reckoning will not work if even one wheel is not attached to the ground. An odometry method where the data is not affected by wheel slip must be introduced to acquire high quality self-location data for omnidirectional mobile robots. We describe a method to obtain robot ego-motion using camera images and optical flow calculation, i.e., where the camera is used as a velocity sensor. In this paper, a silicon retina vision camera is introduced as a mobile robot sensor, which has a good dynamic range under various lighting conditions. A Field-Programmable Gate Array (FPGA) optical flow circuit for the silicon retina is also developed to measure ego-motion of the mobile robot. The developed optical flow calculation system is introduced into a small omnidirectional mobile robot and evaluation experiments for the mobile robot ego-motion are carried out. In the experiments, the accuracy of self-location by the dead reckoning and optical flow methods are evaluated by comparison using motion capture. The results show that the correct position is obtained by the optical flow sensor rather than by dead reckoning.  相似文献   

20.
In this paper a nonholonomic mobile robot with completely unknown dynamics is discussed. A mathematical model has been considered and an efficient neural network is developed, which ensures guaranteed tracking performance leading to stability of the system. The neural network assumes a single layer structure, by taking advantage of the robot regressor dynamics that expresses the highly nonlinear robot dynamics in a linear form in terms of the known and unknown robot dynamic parameters. No assumptions relating to the boundedness is placed on the unmodeled disturbances. It is capable of generating real-time smooth and continuous velocity control signals that drive the mobile robot to follow the desired trajectories. The proposed approach resolves speed jump problem existing in some previous tracking controllers. Further, this neural network does not require offline training procedures. Lyapunov theory has been used to prove system stability. The practicality and effectiveness of the proposed tracking controller are demonstrated by simulation and comparison results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号