首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Muscle- and movement-specific fascicle-tendon interaction affects the performance of the neuromuscular system. This interaction is unknown among elderly and consequently contributes to the lack of understanding the age-related problems on neuromuscular control. The present experiment studied the age specificity of fascicle-tendon interaction of the gastrocnemius medialis (GM) muscle in drop jump (DJ) exercises. Twelve young and thirteen elderly subjects performed maximal squat jumps and DJs with maximal rebound effort on a sledge apparatus. Ankle and knee joint angles, reaction force, and electromyography (EMG) from the soleus (Sol), GM, and tibialis anterior (TA) muscles were measured together with the GM fascicle length by ultrasonography. The results showed that the measured ankle joint stiffness (AJS) during the braking phase correlated positively with the rebound speed in both age groups and that both parameters were significantly lower in the elderly than in young subjects. In both groups, the AJS correlated positively with averaged EMG (aEMG) in Sol during the braking phase and was further associated with GM activation (r = 0.55, P < 0.01) and TA coactivation (TA/GM r = -0.4 P < 0.05) in the elderly subjects. In addition, compared with the young subjects, the elderly subjects showed significantly lower GM aEMG in the braking phase and higher aEMG in the push-off phase, indicating less utilization of tendinous tissue (TT) elasticity. These different activation patterns are in line with the mechanical behavior of GM showing significantly less fascicle shortening and relative TT stretching in the braking phase in the elderly than in the young subjects. These results suggest that age-specific muscle activation patterns as well as mechanical behaviors exist during DJs.  相似文献   

2.
The Hoffman reflex (H-reflex), indicating alpha-motoneuron pool activity, has been shown to be task – and in resting conditions – age dependent. How aging affects H-reflex activity during explosive movements is not clear at present. The purpose of this study was to examine the effects of aging on H-reflexes during drop jumps, and its possible role in drop jump performance. Ten young (26.8 ± 2.7 years) and twenty elderly (64.2 ± 2.7 years) subjects participated in the study. Maximal drop jump performance and soleus H-reflex response (H/M jump) 20 ms after ground contact were measured in a sledge ergometer. Maximal H-reflex, maximal M-wave, Hmax/Mmax-ratio and H-reflex excitability curves were measured during standing rest. Although in young the H-reflex response (Hmax/Mmax) was 6.5% higher during relaxed standing and 19.7% higher during drop jumps (H jump/M jump) than in the elderly group, these differences were not statistically significant. In drop jumps, the elderly subjects had lower jumping height (30.4%, p < 0.001), longer braking time (32.4%, p < 0.01), lower push-off force (18.0%, p < 0.05) and longer push-off time (31.0% p < 0.01). H jump/M jump correlated with the average push-off force (r = 0.833, p < 0.05) and with push-off time (r = ?0.857, p < 0.01) in young but not in the elderly. Correlations between H-reflex response and jumping parameters in young may indicate different jumping and activation strategies in drop jumps. However, it does not fully explain age related differences in jumping performance, since age related differences in H-reflex activity were non-significant.  相似文献   

3.
This study investigated how drop heights and their associated drop jump performance relate to stretch reflex modulations. Eleven male subjects performed ten drop jumps from each of three individually predetermined drop heights. These were the drop height resulting in maximal performance (OPT), as well as 10 cm below (LOW) and above (HIGH) maximal performance. To quantify drop jump performance the reactive strength index, derived from force plate measures, was used. High-density surface EMG provided both stretch reflex response timing and size, as well as novel insight into the associated motor unit recruitment via muscle fiber conduction velocity estimations. These measures were examined in the vastus lateralis (VL), soleus (SOL) and gastrocnemius medialis (GM).Drop jump performance improved by 9% (p < 0.001) from LOW to OPT and decreased by 5% (p = 0.008) from OPT to HIGH. Despite decreasing performance, stretch reflex responses were largest at HIGH. Stretch reflex responses timing did not change; staying within the short (SOL, <60 ms) and medium (VL, GM; 60–85 ms) latency response time-frames. Motor unit recruitment appeared to change across drop heights only for VL, whereas activation intensity only changed for SOL. These results indicate that during drop jumps above OPT neuromuscular modifications result in VL no longer being maximally recruited.  相似文献   

4.
The present study was designed to examine fascicle-tendon interaction in the synergistic medial gastrocnemius (MG) and soleus (Sol) muscles during drop jumps (DJ) performed from different drop heights (DH). Eight subjects performed unilateral DJ with maximal rebounds on a sledge apparatus from different DH. During the exercises, fascicle lengths (using ultrasonography) and electromyographic activities were recorded. The results showed that the fascicles of the MG and Sol muscles behaved differently during the contact phase, but the whole muscle-tendon unit and its tendinous tissue lengthened before shortening in both muscles. The Sol fascicles also lengthened before shortening during the ground contact in all conditions. During the braking phase, the Sol activation increased with increasing DH. However, the amplitude of Sol fascicle lengthening was not dependent on DH during the same phase. In the MG muscle, the fascicles primarily shortened during the braking phase in the lower DH condition. However, in the higher DH conditions, the MG fascicles either behaved isometrically or were lengthened during the braking phase. These results suggest that the fascicles of synergistic muscles (MG and Sol) can behave differently during DJ and that, with increasing DH, there may be specific length change patterns of the fascicles of MG but not of Sol.  相似文献   

5.
The purpose of this study was to investigate the effects of a horizontal approach run and drop height on the activation of lower extremity muscles during drop jumps. Ten participants performed drop jumps from drop heights of 15, 30, 45 and 60 cm with zero (standing), one, two, and three approach run steps. The EMG activities of the Gluteus Maximus (GM), Rectus Femoris (RF), Biceps Femoris (BF), Vastus Lateralis (VL), Tibialis Anterior (TA), Gastrocnemius (GA) and Soleus (SO) were recorded, full-wave rectified, and averaged (aEMG) during the preactivation (50 ms before touchdown), downward, and push-off phases. Increasing drop height did not enhance the muscle activation level of any examined muscles except GA. During the preactivation phase, the aEMG of all muscles except TA increased with the number of approach run steps. The aEMG of RF, BF, VL, and SO also increased with the number of approach run steps during the downward phase, while no aEMG changes were observed during the push-off phase. These results suggest that a horizontal approach run preceding the drop jump is an effective strategy for increasing the muscle preactivation level, which contributes to a higher level of muscle activity during the eccentric contraction phase and could potentially contribute to the reported higher power output during the concentric contraction phase.  相似文献   

6.
The purpose of this study was to investigate the effects of different stretch amplitudes (angular displacements) on the performance and electromyographic (EMG) activity during drop jumps (DJs). The AMTI force platform, the Biovision electrical goniometer, and EMG system were used to record the ground reaction forces, knee angular displacement, and the EMG signals of the rectus femoris. The EMG data were treated by different data-processing methods: the biphase and triphase data-processing methods. The results revealed that the short-stretch DJs had a larger passive force, a higher eccentric end force, a higher concentric average force, and a faster eccentric angular velocity showing a more efficient stretch-shortening cycle (SSC) mechanism in using elastic energy and reactive properties than the long-stretch DJs. Therefore, the short-stretch DJs are recommended in training for the SSC movement. However, the results of biphase data-processing EMG method did not support this conclusion because there was no significant difference between long-stretch DJs and short-stretch DJs by using the biphase data-processing method, whereas the triphase method did support this conclusion and demonstrated that short-stretch DJs are more efficient.  相似文献   

7.
For 13 subjects the performance of drop jumps from a height of 40 cm (DJ) and of countermovement jumps (CMJ) was analysed and compared. From force plate and cine data biomechanical variables including forces, moments, power output and amount of work done were calculated for hip, knee and ankle joints. In addition, electromyograms were recorded from five muscles in the lower extremity. The results obtained for DJ appeared to depend on jumping style. In a subgroup of subjects making a movement of large amplitude (i.e. bending their hips and knees considerably before pushing off) the push-off phase of DJ closely resembled that of CMJ. In a subgroup of subjects making a movement of small amplitude, however, the duration of the push-off phase was shorter, values for moments and mean power output at the knees and ankles were larger, and the mean EMG activity of m. gastrocnemius was higher in DJ than in CMJ. The findings are attributed to the influences of the rapid pre-stretch of knee extensors and plantar flexors after touch-down in DJ. In both subgroups, larger peak resultant reaction forces were found at the knee and ankle joints, and larger peak forces were calculated for the Achilles tendon in DJ than in CMJ.  相似文献   

8.
The purpose of this study was to determine the effect of a weight-bearing free weight resistance training program alone on knee flexion, hip flexion, and knee valgus during unilateral and bilateral drop jump tasks. Twenty-nine young adult females with previous athletic experience were randomly divided into a control (n = 16) and a resistance training (n = 13) groups. The resistance training group completed 8 weeks of lower extremity, weight-bearing exercises using free weights, whereas the control group did not train. A pre- and posttest was conducted to measure knee valgus, knee flexion, and hip flexion during unilateral (30 cm) and bilateral (60 cm) vertical drop jumps for maximum height. Joint angles were determined using 3-dimensional electromagnetic tracking sensors (MotionMonitor; Innovative Sports Training, Inc., Chicago, IL, USA). Initial training intensity for the bilateral squat was 50% of the subject's 1 repetition maximum (RM), which increased 5% each week to 85% during the final week. Sets and repetitions ranged from 2 to 4 and from 4 to 12, respectively. The training loads for all other exercises (lunge, step-up, unilateral squat, and Romanian deadlift) increased from 15RM to 6RM from the initial to the final week. A repeated measures analysis of variance was used to determine differences in the hip and knee joint angles. No significant differences for knee valgus and hip flexion measures were found between the groups after training; however, knee flexion angle significantly increased in the training group from the pretest (77.2 ± 4.1°) to posttest (83.2 ± 3.7°) during the bilateral drop jump. No significant changes occurred during the unilateral drop jump. Bilateral measures for knee flexion, hip flexion, and knee valgus were significantly (p < 0.05) greater than the unilateral measures during the drop jump task, which indicate an increased risk for anterior cruciate ligament (ACL) injury during unilateral drop jumps. The data support that the strength and conditioning specialist can implement resistance training alone during a short-term training period to reduce the risk of ACL injury by increasing knee flexion during a bilateral drop jump task. Increased knee flexion angles after resistance training may indicate a reduced risk for knee injury from improved neuromuscular control, resulting in a softer landing.  相似文献   

9.
The aim of this study was to investigate the relationship between reactive strength in a vertical and a horizontal drop jump (DJ). Subjects (n = 28) with previous jump training experience, performed 6 vertical DJs and 6 horizontal DJs from a 0.4-m box. Contact time, height jumped, distance jumped, and reactive strength index (RSI) were calculated and analyzed. Typical error measurements (TEMCV%) and intraclass correlations (ICCs) were used to assess the intrasubject reliability. Relationships between jumps and within jumps of the aforementioned variables were assessed using ICCs. The ICC (r > 0.789) and the TEMCV% (<10%) indicated good reliability for both vertical and horizontal DJs across each variable. Contact time showed no relationship between jumps (r = 0.222) and had no effect on the vertical DJ height (r = 0.152) or horizontal DJ distance (r = 0.261). The RSI correlation (r = 0.533) indicated a large relationship between reactive ability in the horizontal DJ and the vertical DJ. Contact times were significantly lower in vertical DJs compared with horizontal DJs (p < 0.0001). This study indicated that horizontal DJs are reliable and may be better used to train reactive movements that do not require brief contact times.  相似文献   

10.
Drop landings and drop jumps are common training exercises and injury research model tasks. Drop landings have a single landing, whereas drop jumps include a subsequent jump after initial landing. With the expected ground impact, instant and landing surface suggested to modulate landing neuromechanics, muscle activity, and kinetics should be the same in both tasks when landing from the same height onto the same surface. Although previous researchers have noted some differences between these tasks across separate studies, little research has compared these tasks in the same study. Thus, we examined whether a subsequent movement after initial landing alters muscle activity and kinetics between drop landings and jumps. Fifteen women performed 10 drop landings and drop jumps each from 45 cm. Muscle onsets and integrated muscle activation amplitudes 150 milliseconds before (preactivity) and after landing (postactivity) in the medial and lateral quadriceps, hamstrings, and lateral gastrocnemius and peak and time-to-peak vertical ground reaction forces were examined across tasks (p ≤ 0.05). When performing drop jumps, subjects demonstrated later (p = 0.02) gastrocnemius and lesser lateral gastrocnemius (p = 0.002) and medial quadriceps (p = 0.02) preactivity followed by increased postactivity in all muscles (p = 0.006), with higher peak vertical ground reaction forces (p = 0.04) but no differences in times to these peaks (p = 0.60) than drop landings. The later gastrocnemius activation, higher gastrocnemius and quadriceps postlanding amplitudes, and higher ground reaction forces in drop jumps may allow subjects to propel the body vertically after the initial landing vs. simply absorbing impact in drop landings. Our results indicate that in addition to landing surface and height, anticipation of a subsequent task changes landing neuromechanics. Generalizations of results from landing-only studies should not be made with landing followed-by-subsequent-activity studies. Landing exercises should be incorporated based on sport-specific demands.  相似文献   

11.
To determine the change in muscle oxygenation in response to progressively increasing work rate exercise, muscle oxyhemoglobin + oxymyoglobin saturation was measured transcutaneously with near infrared spectroscopy in the vastus lateralis muscle during cycle ergometry. Studies were done in 11 subjects while gas exchange was measured breath-by-breath. As work rate was increased, tissue oxygenation initially either remained constant near resting levels or, more usually, decreased. Near the work rate and metabolic rate where significant lactic acidosis was detected by excess CO2 production (lactic acidosis threshold, LAT), muscle oxygenation decreased more steeply. As maximum oxygen uptake ( ) was approached, the rate of desaturation slowed. In 8 of the 11 subjects, tissue O2 saturation reached a minimum which was sustained for 1–3 min before was reached. The LAT correlated with both the (r = 0.95,P < 0.0001) and the work rate (r = 0.94,P < 0.0001) at which the rate of tissue O2 desaturation accelerated. These results describe a consistent pattern in the rate of decrease in muscle oxygenation, slowly decreasing over the lower work rate range, decreasing more rapidly in the work rate range of the LAT and then slowing at about 80% of , approaching or reaching a minimum saturation at .  相似文献   

12.
Previous research has highlighted the importance of muscle and tendon structure to stretch shortening cycle performance. However, the relationships between muscle and tendon structure to performance are highly dependent on the speed and intensity of the movement. The purpose of this study was to determine if muscle and tendon structure is associated with the rate of force development (RFD) throughout static squat jump (SJ), countermovement jump (CMJ), and drop jump (DJ; 30-cm height). Twenty-five strength- and power-trained men participated in the study. Using ultrasonography, vastus lateralis (VL) and gastrocnemius (GAS) pennation (PEN) and fascicle length (FL), and Achilles tendon (AT) thickness and length were measured. Subjects then performed SJ, CMJ, and DJ, during which RFD was calculated over time 5 distinct time intervals. During CMJs, early RFD could be predicted between 0 and 10 milliseconds by both GAS-FL (r2 = 0.213, β = 0.461) and AT-length (r2 = 0.191, β = 20.438). Between 10 and 30 milliseconds GAS-FL was a significant predictor of CMJ-RFD (r2 = 0.218, β = 0.476). During DJ, initial RFD (0-10 milliseconds) could be significantly predicted by GAS-FL (r2 = 0.185, β = 20.434), VL-PEN (r2 = 0.189, β = 0.435), and GAS-PEN (r2 = 0.188, β = 0.434). These findings suggest that longer ATs may have increased elasticity, which can decrease initial RFD during CMJ; thus, their use in talent identification is not recommended. The GAS fascicle length had an intensity-dependent relationship with RFD, serving to positively predict RFD during early CMJs and an inverse predictor during early DJs. During DDJs, subjects with greater PEN were better able to redirected initial impact forces. Although both strength and plyometric training have been shown to increase FL, only heavy strength training has been shown to increase PEN. Thus, when a high eccentric load or multiple jumps are required, heavy strength training might be used to elicit muscular adaptations that are suited to fast force production during jumping.  相似文献   

13.
Background: Midazolam is a frequently used benzodiazepine in anaesthesiology and intensive care. Aim: The aim of pilot study was to monitor its effect during heart perfusion in the laboratory rat. Methods: The same groups of animals (n = 10). The 1(st) group was treated with midazolam in a dose of 0.5mg/kg i.p. The 2(nd) group was a placebo. After i.p. administration of heparine injection of 500 IU dose, the hearts were excised and perfused (modified Langendorf's method). Working schedule: stabilization/ischaemia/reperfusion proceed at intervals of 20/30/60 min. Monitored parameters in isolated heart: left ventricle pressure (LVP), end-diastolic pressure (LVEDP), contractility (+dP/dt(max)). Results: The treated hearts showed improved postischemic recovery, reaching LVP values of 92 +/- 6 % at the end of the reperfusion, placebo only 61 +/- 7 %. In placebo hearts LVEDP rose from 10.0 +/- 0.5 mmHg to 43 +/- 4 mmHg after, in treated animals only about 25 mmHg. The treated hearts improved +dP/dt(max) recovery during reperfusion to 91 +/- 8 %. These values were significantly greater than those obtained from the placebo hearts. Conclusions: Positive changes in monitored parameters were found in this experimental pilot study. We conclude that the administration of midazolam in laboratory rats has a cardioprotective potential against ischemia-reperfusion induced injury.  相似文献   

14.
The purpose of the study was to investigate the effects of fatigue on lower extremity joint kinematics, and kinetics during repetitive drop jumps. Twelve recreationally active males (n = 6) and females (n = 6) (nine used for analysis) performed repetitive drop jumps until they could no longer reach 80% of their initial drop jump height. Kinematic and kinetic variables were assessed during the impact phase (100 ms) of all jumps. Fatigued landings were performed with increased knee extension, and ankle plantar flexion at initial contact, as well as increased ankle range of motion during the impact phase. Fatigue also resulted in increased peak ankle power absorption and increased energy absorption at the ankle. This was accompanied by an approximately equal reduction in energy absorption at the knee. While the knee extensors were the muscle group primarily responsible for absorbing the impact, individuals compensated for increased knee extension when fatigued by an increased use of the ankle plantar flexors to help absorb the forces during impact. Thus, as fatigue set in and individuals landed with more extended lower extremities, they adopted a landing strategy that shifted a greater burden to the ankle for absorbing the kinetic energy of the impact.  相似文献   

15.
Changes in community properties during microbial succession   总被引:5,自引:0,他引:5  
Colin R. Jackson 《Oikos》2003,101(2):444-448
  相似文献   

16.
This study compared the magnitude of muscle damage induced when consecutive drop jumps (DJs) were performed on sand vs. firm (wood) surfaces from a height of 0.6 m. Eight subjects performed DJs on a sand surface at a depth of 0.2 m (S condition), and 8 other subjects performed DJs on a wood surface (F condition). Each set consisted of 20 DJs with an interval of 10 seconds between jumps. Subjects performed 5 sets of DJs with 2 minutes between sets. Maximal isometric force, muscle soreness, and plasma creatine kinase (CK) activity were measured immediately before and immediately after the DJ exercise as well as 1, 24, 48, 72, and 96 hours after the DJ exercise. All measures changed significantly (p < 0.05) after exercise for both conditions; however, significantly (p < 0.05) smaller changes in these measures were evident for the S condition than for the F condition. These results show that DJs on a sand surface induce less muscle damage than on a firm surface. Training on sand may improve aerobic capacity or strength with a low risk of muscle damage.  相似文献   

17.
The biomechanical properties of skin   总被引:1,自引:0,他引:1  
  相似文献   

18.
The main load-bearing network in the primary cell wall of most land plants is commonly depicted as a scaffold of cellulose microfibrils tethered by xyloglucans. However, a xyloglucan-deficient mutant (xylosyltransferase1/xylosyltransferase2 [xxt1/xxt2]) was recently developed that was smaller than the wild type but otherwise nearly normal in its development, casting doubt on xyloglucan's role in wall structure. To assess xyloglucan function in the Arabidopsis (Arabidopsis thaliana) wall, we compared the behavior of petiole cell walls from xxt1/xxt2 and wild-type plants using creep, stress relaxation, and stress/strain assays, in combination with reagents that cut or solubilize specific components of the wall matrix. Stress/strain assays showed xxt1/xxt2 walls to be more extensible than wild-type walls (supporting a reinforcing role for xyloglucan) but less extensible in creep and stress relaxation processes mediated by α-expansin. Fusicoccin-induced "acid growth" was likewise reduced in xxt1/xxt2 petioles. The results show that xyloglucan is important for wall loosening by α-expansin, and the smaller size of the xxt1/xxt2 mutant may stem from the reduced effectiveness of α-expansins in the absence of xyloglucan. Loosening agents that act on xylans and pectins elicited greater extension in creep assays of xxt1/xxt2 cell walls compared with wild-type walls, consistent with a larger mechanical role for these matrix polymers in the absence of xyloglucan. Our results illustrate the need for multiple biomechanical assays to evaluate wall properties and indicate that the common depiction of a cellulose-xyloglucan network as the major load-bearing structure is in need of revision.  相似文献   

19.
The loss of Ca2+-sensitivity by natural actomyosin (desensitisation) after treatment with low ionic strength solutions results in marked deceleration of protein superprecipitation. This phenomenon is not due to the removal of minor proteins, since a similar effect was observed during "desensitisation" of synthetic actomyosin containing only myosin and actin. However, addition to desensitised actomyosin of tropomyosin, especially in combination with alpha-actinin markedly restores the initial parameters of superprecipitation and ATPase activity. It was assumed that desensitisation has a direct modifying influence on actomyosin, whose effect is weakened in the presence of tropomyosin and alpha-actinin.  相似文献   

20.
The purpose of this study was to determine the effect of leucine supplementation on indices of muscle damage following eccentric-based resistance exercise. In vitro, the amino acid leucine has been shown to reduce proteolysis and stimulate protein synthesis. Twenty-seven untrained males (height 178.6 ± 5.5 cm; body mass 77.7 ± 13.5 kg; age 21.3 ± 1.6 years) were randomly divided into three groups; leucine (L) (n = 10), placebo (P) (n = 9) and control (C) (n = 8). The two experimental groups (L and P) performed 100 depth jumps from 60 cm and six sets of ten repetitions of eccentric-only leg presses. Either leucine (250 mg/kg bm) or placebo was ingested 30 min before, during and immediately post-exercise and the morning of each recovery day following exercise. Muscle function was determined by peak force during an isometric squat and by jump height during a static jump at pre-exercise (PRE) and 24, 48, 72, and 96 h post-exercise (24, 48, 72, 96 h). Additionally, at these time points each group’s serum levels of creatine kinase (CK) and myoglobin (Mb) along with perceived feelings of muscle soreness were determined. None of the C group dependent variables was altered by the recurring testing procedures. Peak force was significantly decreased across all time points for both experimental groups. The L group experienced an attenuated drop in mean peak force across all post-exercise time points compared to the P group. Jump height significantly decreased from PRE for both the L and P group at 24 h and 48 h. CK and Mb was significantly elevated from PRE for both experimental groups at 24 h. Muscle soreness increased across all time points for the both the L and P group, and the L group experienced a significantly higher increase in mean muscle soreness post-exercise. Following exercise-induced muscle damage, high-dose leucine supplementation may help maintain force output during isometric contractions, however, not force output required for complex physical tasks thereby possibly limiting its ergogenic effectiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号