首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thrombin interaction with platelets. Influence of a platelet protease nexin   总被引:3,自引:0,他引:3  
A fraction of the 125I-thrombin that binds to human platelets is taken into a sodium dodecyl sulfate-resistant 77 kDa complex with a platelet factor (Bennett, W. F., and Glenn, K. C. (1980) Cell 22, 621-627). Here we show that this platelet factor is in several respects similar to protease nexin I (PNI), a fibroblast thrombin inhibitor. The complexes are of the appropriate size, bind to Sepharose that has been derivatized with anti-PNI antibody, do not form when the thrombin active site has been blocked with diisopropylphosphofluoridate, and do not appear on platelets when heparin is present. However, the platelet factor does not bind urokinase, indicating that this "platelet PN" may be distinct from PNI. Following brief incubation with 125I-thrombin, platelet PN X 125I X thrombin complexes are found both associated with the platelets and free in the binding medium. 125I-Thrombin has a higher affinity for platelet PN than for platelet receptors. In 30-s binding incubations carried out with thrombin at concentrations below 0.3 nM, formation of the 77-kDa complex accounts for most of the platelet specific binding of 125I-thrombin. Subtracting this large contribution to 125I-thrombin-specific binding reveals that the reversible binding of 125I-thrombin to platelet receptors exhibits sigmoidal thrombin dose-dependence. Thrombin stimulation of platelet [14C]serotonin release exhibits similar thrombin dose dependence. These results indicate that platelets may possess a mechanism for suppressing their interaction with active thrombin at thrombin doses below 0.3 nM. It is possible that platelet PN carries out this function by capturing thrombin before thrombin binds to its signal-transmitting receptors.  相似文献   

2.
[125I] iodo-α-thrombin has been modified at the macromolecular substrate binding site in order to study the importance of this region in the platelet-thrombin interaction. Modification was effected by the nitration of tyrosine residues with tetranitromethane. This chemical modification abolished the ability of the enzyme to bind with a high affinity to the platelet surface but did not significantly alter low affinity binding. The presence of heparin was also found to inhibit high affinity binding. These results indicate that the high affinity binding site interacts with the fibrinogen binding region of the thrombin molecule and suggests that there are two distinct classes of binding sites for thrombin on the platelet membrane.  相似文献   

3.
We studied the binding of 125I-platelet and plasma Factor XIII (125I-Factor XIII) to human platelets. When 125I-Factor XIII was incubated with gel-filtered platelets, calcium chloride (5 mM) and thrombin (1 unit/ml) at 37 degrees C, saturable binding was observed. Half-maximal binding occurred at 1 min. Binding was inhibited 93% by a 100-fold molar excess of unlabeled ligand but not by other purified proteins. Greater than 87% of platelet-bound radioactivity migrated as thrombin-cleaved a-chains (a'-chains) in sodium dodecyl sulfate-polyacrylamide gels indicating that Factor XIIIa but not Factor XIII binds to platelets. 125I-Factor XIIIa does not bind to unstimulated platelets. When platelet secretion was blocked, binding was markedly inhibited. 125I-Factor XIIIa bound minimally to platelets stimulated with agonists other than thrombin. Thus, binding is dependent on platelet activation, as well as modification of platelets by thrombin. 125I-Factor XIIIa bound to gamma-thrombin-stimulated platelets, at concentrations which did not clot fibrinogen. Therefore, Factor XIIIa is not bound to fibrin associated with platelets. Binding was only partially reversible. Approximately 12,000 molecules of Factor XIIIa were bound per platelet. 125I-Factor XIIIa bound normally to platelets from patients with severe Glanzmann's thrombasthenia indicating that 125I-Factor XIIIa does not bind to platelet glycoproteins IIb or IIIa, or platelet-bound fibrinogen. Chymotrypsin treatment of platelets inhibited 125I-Factor XIIIa binding by 78% without inhibiting secretion. Methylamine and putrescine, Factor XIIIa substrates, and N-ethylmaleimide, an active site inhibitor, did not inhibit binding. Factor XIIIa bound to platelets was enzymatically active and catalyzed [3H]putrescine incorporation into platelet proteins. The specific binding of Factor XIIIa to platelets suggests it may play a role in physiologic reactions involving platelets.  相似文献   

4.
Miller TN  Sinha D  Baird TR  Walsh PN 《Biochemistry》2007,46(50):14450-14460
The zymogen, factor XI, and the enzyme, factor XIa, interact specifically with functional receptors on the surface of activated platelets. These studies were initiated to identify the molecular subdomain within factor XIa that binds to activated platelets. Both factor XIa (Ki approximately 1.4 nM) and a chimeric factor XIa containing the Apple 3 domain of prekallikrein (Ki approximately 2.7 nM) competed with [125I]factor XIa for binding sites on activated platelets, suggesting that the factor XIa binding site for platelets is not located in the Apple 3 domain which mediates factor XI binding to platelets. The recombinant catalytic domain (Ile370-Val607) inhibited the binding of [125I]factor XIa to the platelets (Ki approximately 3.5 nM), whereas the recombinant factor XI heavy chain did not, demonstrating that the platelet binding site is located in the light chain of factor XIa. A conformationally constrained cyclic peptide (Cys527-Cys542) containing a high-affinity (KD approximately 86 nM) heparin-binding site within the catalytic domain of factor XIa also displaced [125I]factor XIa from the surface of activated platelets (Ki approximately 5.8 nM), whereas a scrambled peptide of identical composition was without effect, suggesting that the binding site in factor XIa that interacts with the platelet surface resides in the catalytic domain near the heparin binding site of factor XIa. These data support the conclusion that a conformational transition accompanies conversion of factor XI to factor XIa that conceals the Apple 3 domain factor XI (zymogen) platelet binding site and exposes the factor XIa (enzyme) platelet binding site within the catalytic domain possibly comprising residues Cys527-Cys542.  相似文献   

5.
Covalent binding of thrombin to specific sites on corneal endothelial cells   总被引:3,自引:0,他引:3  
Binding of 125I-labeled human alpha-thrombin to endothelial cells derived from bovine corneas was studied in tissue culture. Specific and saturable binding to the cell surface occurred at 37 degrees C but to a much smaller extent at 4 degrees C. Binding of [125I]thrombin to a specific site on these cells with formation of a 77000-dalton complex was demonstrated by NaDodSO4 (sodium dodecyl sulfate)-polyacrylamide gel electrophoresis. Binding of [125I]thrombin was blocked by a 100-fold excess of unlabeled alpha-thrombin and by the thrombin inhibitor, hirudin. There are approximately 100000 of these thrombin binding sites on the cell surface. Formation of the complex could be detected as early as 15 s, increased rapidly over the next 20-30 min, and then continued at a slower rate for the next 2.5 h. The catalytically active site of the enzyme was required for formation of the NaDodSO4-stable complex as shown by the inability of diisopropyl phosphorofluoride inactivated thrombin to form stable complexes with these cells. The complex was dissociated in NaDodSO4 with 1.0 M hydroxylamine, suggesting an acyl linkage of the enzyme to the cellular binding site. The thrombin-endothelial cell complex was distinct from the thrombin-antithrombin III complex (Mr approximately 90000) on gel electrophoresis, and its formation was not enhanced by heparin. Additional thrombin-cell complexes (Mr less than 77000) were also identified; however, they represent a small fraction of the total thrombin bound to the cells. These observations demonstrate that alpha-thrombin is capable of reacting specifically with corneal endothelial cells to form a NaDod-SO4-stable complex which requires the catalytically active enzyme.  相似文献   

6.
The binding of the competitive thromboxane A2/prostaglandin H2 (TXA2/PGH2) antagonist (9,11-dimethylmethano-11, 12-methano-16-(3-aza-15 alpha beta-omega-tetranor-TXA2) ([125I]PTA-OH) to membranes prepared from human platelets was characterized. [125I]PTA-OH binding to membranes from human platelets was saturable, displaceable, and dependent on protein concentration. Scatchard analysis of equilibrium binding carried out at 30 degrees C revealed one class of binding sites with a Kd of 30 +/- 4 nM and a Bmax of 1.8 +/- 0.3 pmol/mg of protein (n = 5). Kinetic analysis of the binding of [125I]PTA-OH at 0 degrees C yielded a k1 of 1.35 X 10(6) M-1 min-1 and a k-1 of 0.032 min-1, Kd = k-1/k1 = 24 nM. The potencies of a series of TXA2/PGH2 antagonists as inhibitors of [125I]PTA-OH binding was correlated with their potencies as inhibitors of platelet aggregation induced by the TXA2/PGH2 mimetic, U46619 (1 microM) (r = 0.93, p less than 0.01). A series of TXA2/PGH2 mimetics also displaced [125I]PTA-OH from its binding site, and their potencies as inhibitors of [125I]PTA-OH binding were correlated with their potencies as stimulators of platelet aggregation (r = 0.91, p less than 0.05). The IC50 values for displacement of [125I]PTA-OH by PGF2 alpha, PGD2, and the stable PGI2 analog Iloprost were greater than 25 microM, suggesting that [125I]PTA-OH does not bind to other known platelet prostaglandin receptors. These data are consistent with the notion that this binding site may represent the platelet TXA2/PGH2 receptor.  相似文献   

7.
Characterization of thrombin binding to alpha 2-macroglobulin   总被引:1,自引:0,他引:1  
The formation and structural characteristics of the human alpha 2-macroglobulin (alpha 2M)-thrombin complex were studied by intrinsic protein fluorescence, sulfhydryl group titration, electrophoresis in denaturing and nondenaturing polyacrylamide gel systems, and in macromolecular inhibitor assays. The interaction between alpha 2M and thrombin was also assessed by comparison of sodium dodecyl sulfate-gel electrophoretic patterns of peptides produced by Staphylococcus aureus V-8 proteinase digests of denatured alpha 2M-125I-thrombin and alpha 2M-125I-trypsin complexes. In experiments measuring fluorescence changes and sulfhydryl group exposure caused by methylamine, we found that thrombin produced its maximum effects at a mole ratio of approximately 1.3:1 (thrombin:alpha 2M). Measurements of the ability of alpha 2M to bind trypsin after prior reaction with thrombin indicated that thrombin binds rapidly at one site on alpha 2M, but occupies the second site with some difficulty. Intrinsic fluorescence studies of trypsin binding to alpha 2M at pH 5.0, 6.5, and 8.0 not only revealed striking differences in trypsin's behavior over this pH range, but also some similarities between the behavior of thrombin and trypsin not heretofore recognized. Structural studies, using sodium dodecyl sulfate-polyacrylamide gel electrophoresis to measure alpha 2M-125I-thrombin covalent complex formation, indicated that covalency reached a maximum at a mole ratio of approximately 1.5:1. At this ratio, only 1 mol of thrombin is bound covalently per mol of alpha 2M. These gel studies and those of proteolytic digests of denatured alpha 2M-125I-trypsin and alpha 2M-125I-thrombin complexes suggest that proteinases form covalent bonds with uncleaved alpha 2M subunits. The sum of our results is consistent with a mechanism of proteinase binding to alpha 2M in which the affinity of the proteinase for alpha 2M during an initial reversible interaction determines its binding ratio to the inhibitor.  相似文献   

8.
To characterize the thromboxane A2/prostaglandin H2 (TXA2/PGH2) receptor on baboon platelets the binding of [125I]BOP was studied. [125I]BOP bound to washed baboon platelets in a saturable manner. Scatchard analysis of binding isotherms revealed a Kd of 1.12 +/- 0.08 nM and a binding capacity of 54 +/- 5 fmoles/10(8) platelets (326 sites/platelet). Several TXA2/PGH2 agonists and antagonists displaced [125I]BOP from its baboon platelet binding site with a rank order of potency similar to human platelets: I-BOP greater than SQ29548 greater than U46619 = I-PTA-OH greater than PTA-OH. I-BOP aggregated washed baboon platelets with an EC50 of 10 +/- 4 nM. The results indicate that [125I]BOP binds to the TXA2/PGH2 receptor on baboon platelets and that this receptor is similar to its human counterpart.  相似文献   

9.
The kininogens, high molecular weight kininogen (HK) and low molecular weight kininogen (LK), are multifunctional, single-gene products that contain bradykinin and identical amino-terminal heavy chains. Studies were performed to determine if LK would bind directly to platelets. 125I-LK specifically bound to gel-filtered platelets in the presence of 50 microM Zn2+. HK effectively competed with 125I-LK for the same binding site (Ki = 27 +/- 9 nM, n = 5). Similarly, the Ki for LK inhibition of 125I-LK binding was 12 +/- 1 nM (n = 3). Albumin, fibrinogen, factor XIII, and kallikrein did not inhibit 125I-LK binding to unstimulated platelets. 125I-LK (66 kDa) was not cleaved upon binding to platelets. The binding of 125I-LK to unstimulated platelets was found to be fully reversible by the addition of a 50 molar excess of unlabeled LK at both 10 and 20 min. LK binding to platelets was saturable with an apparent Kd of 27 +/- 2 nM (mean +/- S.E., n = 9) and 647 +/- 147 binding sites/platelet. Both LK and HK at plasma concentrations inhibited thrombin-induced platelet aggregation. LK and HK at about 5% of plasma concentration also inhibited thrombin-induced secretion of both stirred and unstirred platelets. Both kininogens were found to be noncompetitive inhibitors of proteolytically active thrombin binding to platelets. The kininogens did not inhibit D-phenylalanyl-prolyl-arginine chloromethyl ketone-treated thrombin from binding to platelets. These studies indicated that both kininogens have a region on their heavy chain which allows them to bind to platelets. Further, kininogen binding by its heavy chain modulates thrombin activation of platelets since it prevents proteolytically active thrombin from binding to its receptor.  相似文献   

10.
The endothelial cell surface membrane protein thrombomodulin binds thrombin with high affinity and acts as both a cofactor for protein C activation and an inhibitor of fibrinogen hydrolysis. We have previously shown that bovine thrombomodulin is a competitive inhibitor of fibrinogen binding to thrombin but has no effect on thrombin activity toward tripeptide substrates or antithrombin III. Hence, thrombomodulin and fibrinogen may share macromolecular specificity sites on thrombin which are distinct from the active site. In this investigation, we have studied the interaction of thrombin-thrombomodulin with fibrinogen and various thrombin derivatives. We show that fibrinogen is a competitive inhibitor of thrombomodulin binding to thrombin, with a Kis = 10 microM. Thrombin derivatives (bovine (pyridoxal phosphate)4-thrombin and human thrombin Quick I), which bind fibrinogen with much reduced affinity, are shown to also interact with thrombomodulin with greatly reduced affinity. These results are consistent with the hypothesis that thrombomodulin and fibrinogen share macromolecular specificity sites on thrombin.  相似文献   

11.
To elucidate the thrombin domains required for high-affinity binding and platelet activation, the platelet binding properties of thrombin and two mutant thrombins, thrombin Quick I and Quick II, were compared to their agonist effects in elevating intraplatelet [Ca2+]. In Quick I, a mutation within the fibrinogen binding groove results in decreased clotting and platelet aggregating activities, whereas in Quick II, a mutation in the primary substrate binding pocket abolishes both activities. Dysthrombin binding was decreased compared to thrombin. The fibrinogen binding groove appeared more important than the primary substrate pocket for high-affinity binding since Quick I showed drastically reduced, and Quick II only slightly reduced, binding affinity (Kd approximately 200 and approximately 10 nM, respectively). The deduced interaction of thrombin with its high-affinity binding site indicated that the thrombin catalytic site is directed toward the platelet surface and therefore, when bound, is proteolytically inactive. Quick I (0.5-5 nM) elicited intraplatelet [Ca2+] fluxes at concentrations where high-affinity binding was undetectable. Saturation of high-affinity binding sites with active-site-modified thrombin did not affect thrombin-induced (0.5 nM) or Quick I-induced (5 nM) responses. In contrast, addition of D-Phe-Pro-Arg chloromethyl ketone (FPRCK) subsequent to thrombin or Quick I stimulation of platelets abolished agonist-induced responses. Since Quick I was only 10-17% as effective as thrombin in increasing intraplatelet [Ca2+], our data support a model in which thrombin acts enzymatically on a platelet membrane "substrate", through an interaction mediated in part by the fibrinogen binding groove of thrombin. This conclusion is consistent with the inhibition observed with high concentrations (greater than 100 nM) of Quick II and FPRCK-modified thrombin (FPR-thrombin) in platelets stimulated with low concentrations of thrombin (less than 0.5 nM) or Quick I (less than 2 nM), consistent with inhibition by substrate depletion. In contrast, concentrations of FPR-thrombin or Quick II (less than 100 nM), which saturated predominantly the high-affinity binding sites, enhanced the platelet responses induced by thrombin (less than 0.5 nM). Thus, occupation of the high-affinity sites with inactive thrombin increased the concentration of active thrombin available for substrate interaction. Quick I-induced responses were not enhanced, consistent with its inability to interact with the high-affinity site. Since thrombin bound to the high-affinity site is proteolytically inactive, we hypothesize that the thrombin high-affinity binding site on platelets functions to alter thrombin activity and platelet activation.  相似文献   

12.
Thrombomodulin blocks the ability of thrombin to activate platelets   总被引:12,自引:0,他引:12  
When thrombin is complexed to the endothelial cell surface receptor thrombomodulin, it loses its procoagulant activities in that it no longer clots fibrinogen or activates factor V. Studies were initiated to determine if complex formation also blocks thrombin's other major procoagulant function, the activation of platelets. When bound to thrombomodulin, thrombin no longer induces platelets to either aggregate or release [14C] serotonin. Binding studies using 125I-labeled thrombin or diisopropyl phosphorothrombin indicate that the complex does not bind to the platelet. When thrombomodulin is added after thrombin has bound to the platelets, the thrombin rapidly redistributes onto the thrombomodulin. These data suggest that in addition to its other anticoagulant effects, thrombomodulin may also act to inhibit and/or reverse platelet activation by thrombin.  相似文献   

13.
The initial step in the interaction of thrombin with human platelets in binding of the enzyme to the platelet surface. The effects of digestion of isolated platelets with trypsin and neuraminidase on aggregation, release of serotonin and binding of thrombin have been examined.Trypsin is a powerful inducer of platelet aggregation as well as the release reaction. The aggregation effect of trypsin may be blocked with disodium ehtylenediaminetatraacetate (EDTA). Further, in the presence of EDTA, trypsin-induced release of [14C]serotonin is 15–20% lower compared to controls and the initial lag period is prolonged. Conditions were developed under which trypsin did neither aggregate nor release serotonin from platelets. Even under these conditions, trypsin caused a profound loss in the thrombin binding capacity of platelets. Thus, the trypsin-induced fall in the thrombin binding capacity and the platelet response are dissociated. This loss in the thrombin binding by trypsin is due to a lower number of binding sites available on the platelet surface and is not due to an altered affinity.Neuraminidase did not induce platelet aggregation or the release reaction. The ability of platelets to bind thrombin was also unimpaired by prior digestion with neuraminidase. Thus, the sialic acid at the platelet surface is not essential in the function of thrombin recognition by the receptor. This moiety may nontheless be a constituent of a glycoprotein which might act as the thrombin receptor.  相似文献   

14.
High and low molecular weight kininogens (HK and LK) are able to bind to platelets to inhibit thrombin binding to and activation of platelets. The heavy chain domain on the kininogens that contains these functions has been determined. Domain 3 (D3) but not domains 1 or 2, completely inhibited 125I-HK binding to platelets (Ki = 24 +/- 7 nM, n = 4). 125I-D3 specifically bound to unstimulated platelets and human umbilical vein endothelial cells. On platelets, it was blocked by unlabeled D3 and HK but not prekallikrein, factor XII, C1s, or C1 inhibitor. Further, one monoclonal antibody (HKH13) directed to kininogens' D3 blocked 125I-HK and 125I-D3 binding to platelets. The binding of 125I-D3 to platelets was fully reversible by addition of 35 molar excess of unlabeled D3. D3 binding to platelets was saturable with an apparent Kd of 39 +/- 8 nM (n = 4) and 1227 +/- 404 binding sites/platelet. D3, like HK and LK, inhibited thrombin-induced platelet activation by preventing thrombin binding to platelets. Another monoclonal antibody (HKH12), directed to D3, which did not block HK binding to platelets, reduced HK's ability to inhibit 125I-alpha-thrombin binding. This result suggests that the region on D3 that inhibits 125I-alpha-thrombin binding to platelets is different from that which directly binds to platelets. These studies indicate that D3 of the kininogens contains both a binding region for platelets and endothelial cells and another region that inhibits thrombin-induced platelet activation.  相似文献   

15.
Activation of platelets by the serine protease thrombin is a critical event in haemostasis. This process involves the binding of thrombin to glycoprotein Ibα (GpIbα) and cleavage of protease-activated receptors (PARs). The N-terminal extracellular domain of GpIbα contains an acidic peptide stretch that has been identified as the main thrombin binding site, and both anion binding exosites of thrombin have been implicated in GpIbα binding, but it remains unclear how they are involved. This issue is of critical importance for the mechanism of platelet activation by thrombin. If both exosites bind to GpIbα, thrombin could potentially act as a platelet adhesion molecule or receptor dimerisation trigger. Alternatively, if only a single site is involved, GpIbα may serve as a cofactor for PAR-1 activation by thrombin. To determine the involvement of thrombin's two exosites in GpIbα binding, we employed the complementary methods of mutational analysis, binding studies, X-ray crystallography and NMR spectroscopy. Our results indicate that the peptide corresponding to the C-terminal portion of GpIbα and the entire extracellular domain bind exclusively to thrombin's exosite II. The interaction of thrombin with GpIbα thus serves to recruit thrombin activity to the platelet surface while leaving exosite I free for PAR-1 recognition.  相似文献   

16.
The interaction of thrombin and platelets was studied with a heterobifunctional photoactivable crosslinking agent. Radiolabeled thrombin that was modified with ethyl-N-5-azido-2-nitrobenzoylaminoacetimidate formed two types of complex with platelet proteins: platelet-associated complexes and supernatant complexes. The platelet-associated complexes formed within 20 s. Autoradiography after electrophoresis with sodium dodecyl sulfate indicated that these complexes had apparent masses of 210, 185, 155 and 125 kDa. Formation of the complexes was blocked by hirudin; this is consistent with crosslinking that was a direct consequence of the binding of thrombin to a specific receptor, since hirudin blocks thrombin-induced platelet activation and the saturable binding of thrombin to platelets. The labeled supernatant complex had an apparent mass of about 490 kDa. It also formed in the supernatant solution of platelets after activation with a divalent cation ionophore, suggesting a complex of thrombin with a secreted protein. The supernatant complex did not involve fibrinogen or alpha 2-macroglobulin, but a similar complex was formed with partially purified secreted glycoprotein G (thrombin-sensitive protein, thrombospondin). Formation of the complex was blocked by hirudin. A similar complex was formed after prolonged (1 h) incubation without photoactivation. It is concluded that thrombin forms high-affinity, hirudin-sensitive complexes with secreted glycoprotein G, as well as with platelet surface proteins.  相似文献   

17.
Proteins of the annexin/lipocortin family act as in vitro anticoagulants by binding to anionic phospholipid vesicles. In this study, we investigated whether annexin V (placental anticoagulant protein I) would bind to human platelets. Annexin V bound to unstimulated platelets in a reversible, calcium-dependent reaction with an apparent Kd of 7 nM and 5000-8000 sites/platelet. Additional binding sites could be induced by several platelet agonists in the following order of effectiveness: A23187 greater than collagen + thrombin greater than collagen greater than thrombin. However, neither ADP nor epinephrine induced additional binding sites. Three other proteins of the annexin family (annexins II, III, and IV) competed for annexin V platelets binding sites with the same relative potencies previously observed for binding to phospholipid vesicles. Phospholipid vesicles containing phosphatidylserine completely inhibited binding of annexin V to platelets. Annexin V completely blocked binding of 125I-factor Xa to thrombin-stimulated platelets. These results support the hypothesis that phosphatidylserine exposure occurs during platelet activation and may be necessary for assembly of the prothrombinase complex on platelet membranes.  相似文献   

18.
Highly purified alpha-thrombin has been chemically modified in an attempt to determine which features of the molecule are important for normal platelet-thrombin interactions. Modifying agents included diisopropylphosphorofluoridate and 1-chloro-3-tosylamido-7-amino-L-2-heptanone, which modify serine and histidine, respectively, at the catalytic site, as well as N-bromosuccinimide and 2-hydroxy-5-nitrobenzyl bromide, which modify a single tryptophan at or near the fibrinogen-binding site. Active site-directed modification did not appreciably affect the binding characteristics, but prevented platelet activation. In contrast, modification of tryptophan at the macromolecular substrate-binding site resulted in the loss of high affinity binding of thrombin to platelets, while low affinity binding was apparently unaffected. This modification altered but did not abolish the ability of thrombin to effect platelet aggregation and release of [14C]serotonin. These results suggest that residues at the catalytic site are not involved in binding and that the macromolecular substrate-binding site of alpha-thrombin participates in high affinity binding to platelets. These data are also consistent with the existence of at least two types of binding sites for thrombin on the platelet surface as well as more than one platelet-binding region on the thrombin molecule.  相似文献   

19.
Domains 3 and 5 of high-molecular-weight kininogen (HK) have been shown to bind to platelets in a zinc-dependent reaction. However, the platelet-binding proteins responsible for this interaction have not been identified. We have focused on the platelet-binding site for the heavy chain (domain 3), which we approached using a domain 3-derived peptide ligand and isolated binding proteins by affinity chromatography. The domain 3-derived peptide, thrombin, HK, factor XII, as well as antibody to glycocalicin (the N-terminal portion of the alpha chain of GPIb) recognized a protein at 74 kD. We also isolated the thrombin receptor (PAR 1) at 45 kD, however, none of the above-mentioned ligands bound to this protein. Isolation of platelet membrane proteins using a monoclonal anti-glycocalicin antibody column revealed the same HK binding protein at 74 kD, which was reactive with anti-GPIb and represents a GPIb fragment. By photoaffinity labeling, HK interacted with membrane GPIb, which was then isolated in native form (135 kD) along with gC1qR, a ligand for the HK light chain. Finally, (125)I-HK binding to platelets was significantly inhibited by the anti-GPIb antibody. These results suggest that the GPIb alpha chain, a known thrombin binding protein, is also one of the zinc-dependent platelet membrane binding sites for HK domain 3.  相似文献   

20.
Ho DH  Baglia FA  Walsh PN 《Biochemistry》2000,39(2):316-323
To localize the platelet binding site on factor XI, rationally designed, conformationally constrained synthetic peptides were used to compete with [(125)I]factor XI binding to activated platelets. The major platelet binding energy resided within the sequence of amino acids T(249)-F(260). Homology scanning, using prekallikrein amino acid substitutions within the synthetic peptide T(249)-F(260), identified a major role for R(250) in platelet binding. Inhibition of [(125)I]factor XI binding to activated platelets by the recombinant Apple 3 domain of factor XI and inhibition by unlabeled factor XI were identical, whereas the recombinant Apple 3 domain of prekallikrein had little effect. A "gain-of-function" chimera in which the C-terminal amino acid sequence of the Apple 3 domain of prekallikrein was replaced with that of factor XI was as effective as the recombinant Apple 3 domain of factor XI and unlabeled factor XI in inhibiting [(125)I]factor XI binding to activated platelets. Alanine scanning mutagenic analysis of the recombinant Apple 3 domain of factor XI indicated that amino acids R(250), K(255), F(260), and Q(263) (but not K(252) or K(253)) are important for platelet binding. Thus, the binding energy mediating the interaction of factor XI with platelets is contained within the C-terminal amino acid sequence of the Apple 3 domain (T(249)-V(271)) and is mediated in part by amino acid residues R(250), K(255), F(260), and Q(263).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号