首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solberg EJ  Heim M  Grøtan V  Saether BE  Garel M 《Oecologia》2007,154(2):259-271
A general feature of the demography of large ungulates is that many demographic traits are dependent on female body mass at early ages. Thus, identifying the factors affecting body mass variation can give important mechanistic understanding of demographic processes. Here we relate individual variation in autumn and winter body mass of moose calves living at low density on an island in northern Norway to characteristics of their mother, and examine how these relationships are affected by annual variation in population density and climate. Body mass increased with increasing age of their mother, was lower for calves born late in the spring, decreased with litter size and was larger for males than for female calves. No residual effects of variation in density and climate were present after controlling for annual variation in mother age and calving date. The annual variation in adult female age structure and calving date explained a large part (71–75%) of the temporal variation in calf body mass. These results support the hypotheses that (a) body mass of moose calves are affected by qualities associated with mother age (e.g. body condition, calving date); and (b) populations living at low densities are partly buffered against temporal fluctuations in the environment.  相似文献   

2.
Summary The objective of this study was to determine whether infection of Avena fatua L. plants by the mycorrhizal fungus Glomus intraradices Schenck & Smith could influence the vigor of the offspring generation. Two experiments demonstrated that mycorrhizal infection of the maternal generation had slight but persistent positive effects on offspring leaf expansion in the early stages of growth. In two other experiments, mycorrhizal infection of mother plants had several long lasting effects on their offspring. Offspring produced by mycorrhizal mother plants had greater leaf areas, shoot and root nutrient contents and root:shoot ratios compared to those produced by non-mycorrhizal mother plants. Moreover, mycorrhizal infection of mother plants significantly reduced the weight of individual seeds produced by offspring plants while it increased the P concentrations of the seeds and the number of seeds per spikelet produced by offspring plants. The effects of mycorrhizal infections of maternal plants on the vigor and performance of offspring plants were associated with higher seed phosphorus contents but generally lighter seeds. The results suggest that mycorrhizal infection may influence plant fitness by increasing offspring vigor and offspring reproductive success in addition to previously reported increases in maternal fecundity.  相似文献   

3.
Consistent among individual variation in behavior,or animal personality,is present in a wide variety of species.This behavioral variation is maintained by both genetic and environmental factors.Parental effects are a special case of environmental variation and are expected to evolve in populations experiencing large fluctuations in their environment.They represent a non-genetic pathway by which parents can transmit information to their offspring,by modulating their personality.While it is expected that parental effects contribute to the observed personality variation,this has rarely been studied in wild populations.We used the multimammate mouse Mastomys natalensis as a model system to investigate the potential effects of maternal personality on offspring behavior.We did this by repeatedly recording the behavior of individually housed juveniles which were born and raised in the lab from wild caught females.A linear correlation,between mother and offspring in behavior,would be expected when the personality is only affected by additive genetic variation,while a more complex relationship would suggests the presence of maternal effects.We found that the personality of the mother predicted the behavior of their offspring in a non-linear pattern.Exploration behavior of mother and offspring was positively correlated,but only for slow and average exploring mothers,while this correlation became negative for fast exploring mothers.This may suggests that early maternal effects could affect personality in juvenile M.natalensis,potentially due to density-dependent and negative frequency-dependent mechanisms,and therefore contribute to the maintenance of personality variation.  相似文献   

4.
Abstract The existence of adaptive phenotypic plasticity demands that we study the evolution of reaction norms, rather than just the evolution of fixed traits. This approach requires the examination of functional relationships among traits not only in a single environment but across environments and between traits and plasticity itself. In this study, I examined the interplay of plasticity and local adaptation of offspring size in the Trinidadian guppy, Poecilia reticulata. Guppies respond to food restriction by growing and reproducing less but also by producing larger offspring. This plastic difference in offspring size is of the same order of magnitude as evolved genetic differences among populations. Larger offspring sizes are thought to have evolved as an adaptation to the competitive environment faced by newborn guppies in some environments. If plastic responses to maternal food limitation can achieve the same fitness benefit, then why has guppy offspring size evolved at all? To explore this question, I examined the plastic response to food level of females from two natural populations that experience different selective environments. My goals were to examine whether the plastic responses to food level varied between populations, test the consequences of maternal manipulation of offspring size for offspring fitness, and assess whether costs of plasticity exist that could account for the evolution of mean offspring size across populations. In each population, full‐sib sisters were exposed to either a low‐ or high‐food treatment. Females from both populations produced larger, leaner offspring in response to food limitation. However, the population that was thought to have a history of selection for larger offspring was less plastic in its investment per offspring in response to maternal mass, maternal food level, and fecundity than the population under selection for small offspring size. To test the consequences of maternal manipulation of offspring size for offspring fitness, I raised the offspring of low‐ and high‐food mothers in either low‐ or high‐food environments. No maternal effects were detected at high food levels, supporting the prediction that mothers should increase fecundity rather than offspring size in noncompetitive environments. For offspring raised under low food levels, maternal effects on juvenile size and male size at maturity varied significantly between populations, reflecting their initial differences in maternal manipulation of offspring size; nevertheless, in both populations, increased investment per offspring increased offspring fitness. Several correlates of plasticity in investment per offspring that could affect the evolution of offspring size in guppies were identified. Under low‐food conditions, mothers from more plastic families invested more in future reproduction and less in their own soma. Similarly, offspring from more plastic families were smaller as juveniles and female offspring reproduced earlier. These correlations suggest that a fixed, high level of investment per offspring might be favored over a plastic response in a chronically low‐resource environment or in an environment that selects for lower reproductive effort  相似文献   

5.
Maternal and environmental effects can profoundly influence offspring phenotypes, independent of genetic effects. Within avian broods, both the asymmetric post‐hatching environment created by hatching asynchrony and the differential maternal investment through the laying sequence have important consequences for individual nestlings in terms of the allocation of resources to body structures with different contributions to fitness. The purpose of this study was to evaluate the relative importance of post‐hatching environmental and maternal effects in generating variation in offspring phenotypes. First, an observational study showed that within blue tit, Cyanistes caeruleus, broods, late‐hatched nestlings allocated resources to tarsus development, maintained mass gain and head‐bill growth and directed resources away from the development of fourth primary feathers. Second, a hatching order manipulation experiment resulted in nestlings from first‐laid eggs hatching last, thereby allowing comparison with both late and early‐hatched nestlings. Experimental nestlings had growth patterns which were closer to late‐hatched nestlings, suggesting that within‐brood growth patterns are determined by post‐hatching environmental effects. Therefore, we conclude that post‐hatching environmental effects play an important role in generating variation in offspring phenotypes.  相似文献   

6.
Maternal pre‐reproductive experience can impose phenotypic changes on offspring traits. These modifications may result from physiological constraints, although they can also increase the adaptation of offspring to their anticipated environment. Distinguishing between the two interpretations is often difficult. The effects of virgin female rearing density on their longevity and the characteristics of their male offspring are explored in the polyembryonic parasitoid wasp Copidosoma koehleri (Blanchard) (Encyrtidae: Hymenoptera). High rearing density may adversely affect maternal physiology or, alternatively, act as a cue for anticipated competition during the lives of the mothers and their offspring. Male offspring of group‐reared females reach pupation significantly sooner than male offspring of females reared alone. This accelerated development may provide an advantage when competition from superparasitising individuals is expected. The lifespan of high‐density females is longer than that of singly‐reared females, and their male offspring survive longer, suggesting that crowded rearing does not reduce the fitness of females or offspring. The shortened development time of male offspring may reflect an adaptive epigenetic response to predicted competitive conditions.  相似文献   

7.
W. E. Kunin 《Oecologia》1992,91(1):129-133
Summary One possible consequence of low population density, particularly in self-incompatible plants, is reproductive failure. I surveyed seed set per flower in two populations of the self-incompatible annual Diplotaxis erucoides (Brassicaceae) in Jerusalem, Israel. Widely spaced plants had lower fruit set and fewer seeds per filled silique than did plants growing close to conspecific neighbors. Such density-dependent reproductive success could help explain the maintanence of spatial patchiness in plant populations, and could also have implications for population dynamics of rare species.  相似文献   

8.
Environmental conditions experienced in early life can influence an individual's growth and long-term health, and potentially also that of their offspring. However, such developmental effects on intergenerational outcomes have rarely been studied. Here we investigate intergenerational effects of early environment in humans using survey- and clinic-based data from rural Gambia, a population experiencing substantial seasonal stress that influences foetal growth and has long-term effects on first-generation survival. Using Fourier regression to model seasonality, we test whether (i) parental birth season has intergenerational consequences for offspring in utero growth (1982 neonates, born 1976-2009) and (ii) whether such effects have been reduced by improvements to population health in recent decades. Contrary to our predictions, we show effects of maternal birth season on offspring birth weight and head circumference only in recent maternal cohorts born after 1975. Offspring birth weight varied according to maternal birth season from 2.85 to 3.03 kg among women born during 1975-1984 and from 2.84 to 3.41 kg among those born after 1984, but the seasonality effect reversed between these cohorts. These results were not mediated by differences in maternal age or parity. Equivalent patterns were observed for offspring head circumference (statistically significant) and length (not significant), but not for ponderal index. No relationships were found between paternal birth season and offspring neonatal anthropometrics. Our results indicate that even in rural populations living under conditions of relative affluence, brief variation in environmental conditions during maternal early life may exert long-term intergenerational effects on offspring.  相似文献   

9.
Experimental manipulation of the number of altricial offspring is supposed to modify parental expenditure in birds. In addition to the observed increase in parental feeding rate, it is also possible that the choice of prey or the size of load may change with the changing demand for food. Sexual differences in the provisioning response are also expected, on the basis of earlier studies. We examined the effect of brood size manipulation on choice of prey brought to nestlings and load size in the pied flycatcher. The composition and size of loads differed between years, possibly depending on varying availability of different prey types. Males responded to brood size enlargement by gathering heavier loads, whereas females showed no response. The alteration of load size in males was not explained by a larger number of prey items or mean prey size, but was a combination of these components. It is likely that males also increased their work rate in response to increased food demand at the nest. The absence of response in females might be because they are unable to increase work rate any further, or because food delivery rate in females can not be optimized by changing load properties. Received: 18 December 1997 / Accepted: 1 March 1998  相似文献   

10.
Summary We use field and laboratory experiments to determine whether Hyphydrus ovatus, a predatory aquatic beetle, is food limited, and whether any food shortage results from depletion of prey by these predators (intrinsic food shortage) or is independent of predation by these beetles (extrinsic food shortage). In the laboratory, differences in feeding rate influence body fat content, thus making fat content a useful index of recent feeding history. H. ovatus collected during the breeding season have fat contents significantly greater than those of H. ovatus starved for 25 days, but not significantly different from those of H. ovatus fed ad libitum for 25 days, indicating that natural feeding rates are near the maximum possible. H. ovatus confined at a density 60 times greater than natural show reduced fat content and feeding rate relative to natural, indicating that at very high densities H. ovatus is capable of depleting its prey. Addition of supplemental natural prey (primarily Cladocera) to experimental enclosures resulted in an order of magnitude increase in prey availability, and a significant increase in fat content and feeding rate of confined H. ovatus. Adults of this species do not appear to be food limited during the breeding season, and extraordinarily high densities of adults seem to be necessary to produce intrinsic food shortage. These results suggest that feeding links between H. ovatus an its principal prey do not have major effects on population dynamics under typical field conditions, and call into question the assumption that closely coupled predator-prey interactions are the sole explanation for observed food-web patterns.  相似文献   

11.
1. In many noncooperative vertebrates, maternal effects commonly influence offspring survival and development. In cooperative vertebrates, where multiple adults help to raise young from a single brood, social effects may reduce or replace maternal effects on offspring. 2. Factors affecting offspring survival and development at different stages (fledging, nutritional independence and adulthood) were tested in the cooperatively breeding Arabian babbler to determine the relative importance of social, maternal and environmental factors at each stage. An influence of maternal effects was found during the nestling stage only. 3. Social factors affected the survival and development of young at all stages. The amount of food received from helpers influenced post-fledging weight gain, development of foraging skills, and survival to reproductive age. Environmental effects were also important, with groups occupying high-quality territories more likely to produce young that survived to maturity. 4. The strong influence of helper contributions on the survival and development of young at all stages from hatching to maturity suggests social factors may have important long-term effects on offspring fitness in cooperative societies. Traditional measures of offspring survival in cooperative birds, which commonly measure survival to fledging age only, may underestimate the significant benefit of helper contributions on the survival and development of young.  相似文献   

12.
Wildlife pedigrees provide insights into ecological and evolutionary processes. DNA obtained from noninvasively collected hair is often used to determine individual identities for pedigrees and other genetic analyses. However, detection rates associated with some noninvasive DNA studies can be relatively low, and genetic data do not provide information on individual birth year. Supplementing hair DNA stations with video cameras should increase the individual detection rate, assuming accurate identification of individuals via video data. Video data can also provide birth year information for individuals captured as young of the year, which can enrich population‐level pedigrees. We placed video cameras at hair stations and combined genetic and video data to reconstruct an age‐specific, population‐level pedigree of wild black bears during 2010–2020. Combining individual birth year with mother–offspring relatedness, we also estimated litter size, interlitter interval, primiparity, and fecundity. We used the Cormack‐Jolly‐Seber model in Program Mark to evaluate the effect of maternal identity on offspring apparent survival. We compared model rankings of apparent survival and parameter estimates based on combined genetic and video data with those based on only genetic data. We observed 42 mother–offspring relationships. Of these, 21 (50%) would not have been detected had we used hair DNA alone. Moreover, video data allowed for the cub and yearling age classes to be determined. Mean annual fecundity was 0.42 (95% CI: 0.27, 0.56). Maternal identity influenced offspring apparent survival, where offspring of one mother experienced significantly lower apparent survival (0.39; SE = 0.15) than that of offspring of four other mothers (0.89–1.00; SE = 0.00–0.06). We video‐documented cub abandonment by the mother whose offspring experienced low apparent survival, indicating individual behaviors (e.g., maternal care) may scale up to affect population‐level parameters (e.g., cub survival). Our findings provide insights into evolutionary processes and are broadly relevant to wildlife ecology and conservation.  相似文献   

13.
Populations ol three species of land snail, Helicella itala. Candidula intersecta and Cochlicella acuta are studied on sand dunes on Coll in the Inner Hebrides. Population density and mean shell size were estimated on 18 sample sites. The sites were ranked for six environmental factors. Environmental factors which are related to the dune vegetational succession account for much of the variation in the densities of C. intersecta and C. acuta. The density of H. itala, however, shows no strong association with these factors. Both snail density and shell size are reactively independent of total soil calcium levels. For each of the three species, mean shell size is negatively associated with population density; the environmental factors account for little of the variation in shell size. Four possible mechanisms are suggested to account for the variation of shell size with density. It is argued that a direct influence of density on shell size, possibly mediated by mucus conditioning of the environment is the most probable mechanism. There is some evidence to suggest an inter-specific effect whereby C. intersecta density affects H. itala shell size.  相似文献   

14.
Populations ol three species of land snail, Helicella itala. Candidula intersecta and Cochlicella acuta are studied on sand dunes on Coll in the Inner Hebrides.
Population density and mean shell size were estimated on 18 sample sites. The sites were ranked for six environmental factors. Environmental factors which are related to the dune vegetational succession account for much of the variation in the densities of C. intersecta and C. acuta . The density of H. itala , however, shows no strong association with these factors. Both snail density and shell size are reactively independent of total soil calcium levels. For each of the three species, mean shell size is negatively associated with population density; the environmental factors account for little of the variation in shell size.
Four possible mechanisms are suggested to account for the variation of shell size with density. It is argued that a direct influence of density on shell size, possibly mediated by mucus conditioning of the environment is the most probable mechanism. There is some evidence to suggest an inter-specific effect whereby C. intersecta density affects H. itala shell size.  相似文献   

15.
Lardies MA  Carter MJ  Bozinovic F 《Oecologia》2004,138(3):387-395
Studies of life history aim to explain patterns in the evolution of reproductive investment, growth, and survival. Trade-offs between traits are a fundamental component of life history theory. In herbivorous arthropods life history traits are often responsive to variation in numerous environmental factors, especially diet quality. Using three artificial diets under controlled laboratory conditions, we examined changes in life history traits (i.e. growth rate, offspring number, offspring size, incubation period), trade-offs between traits, and maternal effect on the growth rate of offspring, in the common woodlouse (terrestrial isopod), Porcellio laevis. The high protein diet had significant impacts on offspring production, triggering a smaller-sized offspring, and demonstrating a trade-off between these last two traits. The high carbohydrate diet seldom exerted a significant effect on incubation period. The quality of dietary items evidently has important consequences on the life history of the mother and, thus, on offspring growth; the directions of these effects, however, were opposite. Mothers fed diets with high protein concentrations presented significant maternal effects, measured as offspring growth rate during later ontogeny. Our results support the notion that protein, rather than carbohydrate, concentrations in the diet limit herbivorous arthropods, and have significant consequences on life history traits, as was seen for P. laevis. Clearly, the change in phenotypic correlations between incubation period and offspring number from negative to positive is an empirical demonstration of the context dependence of life history trait trade-offs.  相似文献   

16.
Maternal hormones are important mediators of prenatal maternal effects. Although many experimental studies have demonstrated their potency in shaping offspring phenotypes, we know remarkably little about their adaptive value. Using long‐term data on a wild collared flycatcher (Ficedula albicollis) population, we show that natural selection acts in opposite ways on two maternally derived androgens, yolk androstenedione (A4) and yolk testosterone (T). High yolk A4 concentrations are associated with higher fitness, whereas high yolk T concentrations are associated with lower fitness. Natural selection thus favours females that produce eggs with high A4 and low T concentrations. Importantly, however, there exists a positive (non‐genetic) correlation between A4 and T, which suggests that females are limited in their ability to reach this adaptive optimum. Thereby, these results provide strong evidence for an adaptive value of differential maternal androgen deposition, and a mechanistic explanation for the maintenance of variation in maternal investment in the wild.  相似文献   

17.
Summary We investigated effects of plant density on floral phenology and potential mating in artificial populations of the outcrossing ornamental Nicotiana alata planted at three densities. Path analysis revealed that increasing plant density yielded significantly earlier peak flowering dates, significantly earlier last flowering dates, and significantly lower plant biomass. Direct effects of density on final flower number were not significant. Variation among replicate plots for first date of flowering was larger than variation among densities, indicating that factors other than density influence floral initiation.We did not record actual mating, but determined from phenological data the number and identity of potential mates. Increased density had several effects on potential mating patterns and on potential Ne, effective population number. At high density, fewer focal plants flowered for shorter durations. This led to less overlap in flowering time among plants, decreasing the number of potential parental combinations possible among the progeny. Two outcomes of high density, the lower total number of plants flowering and the lower number of plants flowering at most census dates, tended to reduce potential Ne. In contrast, it was low density, where variance in flower number was greatest, that was most likely to yield the greatest reduction in Ne due to variance in progeny number.At high density the potential for assortative mating among tall plants was much greater and occurred later than among large plants at low density. Much of the potential high density assortative mating occurred late in the phenology of individual plants, when there was likely to be lower fruit set.We discuss how ecological agents that alter flowering phenology can potentially alter the genetics of populations, the level and timing of assortative mating and, if genetic variation for response to such ecological agents exists, the potential selection regime.  相似文献   

18.
Food availability significantly affects an animal's energy metabolism,and thus its phenotype,survival,and reproduction.Maternal and offspring responses to food conditions are critical for understanding population dynamics and life-history evolution of a species.In this study,we conducted food manipulation experiments in field enclosures to identify the effect of food restriction on female reproductive traits and postpartum body condition,as well as on hatchling phenotypes,in a lacertid viviparous lizard from the Inner Mongolian desert steppe of China.Females under low-food availability treatment (LFT) had poorer immune function and body condition compared with those under high-food availability treatment (HFT).The food availability treatments significantly affected the litter size and litter mass of the females,but not their gestation period in captivity or brood success,or the body size,sprint speed,and sex ratio of the neonates.Females from the LFT group had smaller litter sizes and,therefore,lower litter mass than those from the HFT group.These results suggest that female racerunners facing food restriction lay fewer offspring with unchanged body size and locomotor performance,and incur a cost in the form of poor postpartum body condition and immune function.The flexibility of maternal responses to variable food availability represents an important life strategy that could enhance the resistance of lizards to unpredictable environmental change.  相似文献   

19.
Maternal stress during gestation has the potential to affect offspring development via changes in maternal physiology, such as increases in circulating levels of glucocorticoid hormones that are typical after exposure to a stressor. While the effects of elevated maternal glucocorticoids on offspring phenotype (i.e., “glucocorticoid‐mediated maternal effects”) have been relatively well established in laboratory studies, it remains poorly understood how strong and consistent such effects are in natural populations. Using a meta‐analysis of studies of wild mammals, birds, and reptiles, we investigate the evidence for effects of elevated maternal glucocorticoids on offspring phenotype and investigate key moderators that might influence the strength and direction of these effects. In particular, we investigate the potential importance of reproductive mode (viviparity vs. oviparity). We show that glucocorticoid‐mediated maternal effects are stronger, and likely more deleterious, in mammals and viviparous squamate reptiles compared with birds, turtles, and oviparous squamates. No other moderators (timing and type of manipulation, age at offspring measurement, or type of trait measured) were significant predictors of the strength or direction of the phenotypic effects on offspring. These results provide evidence that the evolution of a prolonged physiological association between embryo and mother sets the stage for maladaptive, or adaptive, prenatal stress effects in vertebrates driven by glucocorticoid elevation.  相似文献   

20.
The absence of essential biochemical nutrients, such as polyunsaturated fatty acids or sterols, has been considered as a mechanism determining trophic interactions between the herbivore Daphnia and its phytoplankton food source. Here, we experimentally quantify the sensitivity of two Daphnia species to decreasing amounts of dietary sterols by measuring variations in life history traits. The two species Daphnia magna and D. galeata were fed different mixtures of the sterol-containing green alga Scenedesmus obliquus and the sterol-free cyanobacterium Synechococcus elongatus; a higher proportion of Synechococcus in the food is equivalent to a decrease in dietary sterols. To address the significance of sterol limitation, the Daphnia species were also fed Synechococcus supplemented with cholesterol. In both species, somatic and population growth rates, maternal dry mass, the number of viable offspring, and the probability of survival were significantly reduced with the lower availability of sterols. A high correlation between the sterol content of the mixed diet and the somatic and population growth rates was found, and growth on cholesterol-supplemented Synechococcus fitted well into this correlation. Somatic growth of first-clutch neonates grown on 100% Synechococcus exhibited a pattern similar to that of somatic growth of their mothers grown on the different food regimes, which demonstrated the significance of maternal effects for sterol-limited population growth. Daphnia galeata had a twofold higher incipient limiting sterol level than D. magna, which indicated interspecific differences in sterol requirements between the two Daphnia species. The results suggest a strong impact of dietary sterols on life history traits and therefore, population dynamics of the keystone species Daphnia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号