首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Deferred metabolism of glucose by Clostridium tetanomorphum   总被引:2,自引:0,他引:2  
  相似文献   

2.
Summary Assay methods and some properties of (+)-citramalate pyruvatelyase, an enzyme from Clostridium tetanomorphum that converts (+)-citramalate to pyruvate and acetate, are described. The enzyme is very active (0.8–1.2 units per mg protein) in freshly prepared extracts, but loses activity rapidly during storage. (+)-Citramalate is the only substrate found to be cleaved by the lyase; the equilibrium for the reaction permits almost complete cleavage at low substrate concentrations. A divalent cation is required as a cofactor. A sensitive and specific enzymic method for estimating (+)-citramalate is described.It is a pleasure to dedicate this paper to Prof. C. B. Van Niel who first awakened the interest of the author in the problems of bacterial metabolism and, more specifically, in the fermentation of glutamic acid.This work was supported in part by a research grant from the National Institutes of Health (AI-00563), U.S. Public Health Service, and by funds from the California Agricultural Experiment Station  相似文献   

3.
4.
Biotechnology Letters - Pseudomonas sp. cells have been entrapped in alginate and chitosan beads. The latter had better mechanical stability, while the phenylalanine hydroxylation was faster in...  相似文献   

5.
6.
7.
8.
Abstract The five conserved tryptophan residues in the cellulose binding domain of xylanase A from Pseudomonas fluorescens subsp. cellulosa were replaced with alanine and phenylalanine. The mutated domains were fused to mature alkaline phosphatase, and the capacity of the hybrid proteins to bind cellulose was assessed. Alanine substitution of the tryptophan residues, in general, resulted in a significant decrease in the capacity of the cellulose binding domains to bind cellulose. Mutant domains containing phenylalanine substitution retained some affinity for cellulose. The C-terminal proximal tryptophan did not play an important role in ligand binding, while Trp13, Trp34 and Trp38 were essential for the cellulose binding domain to retain cellulose binding capacity. Data presented in this study suggest major differences in the mechanism of cellulose attachment between Pseudomonas and Cellulomonas cellulose binding domains.  相似文献   

9.
10.
11.
12.
1. The enzyme citramalate from Clostridium tetanomorphum is not stable in crude extracts. However, the inactive enzyme can be reactivated by incubation with dithioerythritol followed by acetylation with acetic anhydride. Reactivation was also obtained with acetate, ATP, MgCl2 and acetate : SH-enzyme ligases (AMP) from C. tetanomorphum or Klebsiella aerogenes. 2. Incubation of the inactive enzyme with iodoacetate resulted in rapid loss of enzymic activity as determined by reactivation with acetic anhydride whereas the active enzyme was stable in the presence of iodoacetate. Using ido[2-(14)C]acetate the sites of carboxymethylation and acetylation where identified as cysteamine residues of the enzyme. The results demonstrate that the active enzyme contains acetyl thiolester residues which play the central role in the catalytic mechanism. 3. Citramalate lyase was purified by a procedure almost identical to that already described for citrate lyase from K. aerogenes. The molecular weight of citramalate lyase is equal to that of citrate lyase (Mr = 5.2--5.8 X 10(5)) as estimated by gel chromatography and sucrose gradient centrifugation. Polyacrylamide gel elctrophoresis of citramalate lyase in sodium dodecylsulfate yielded three polypeptide chains (Mr: alpha 5.3--5.6 X 10(4); beta 3.3--3.6 X 10(4); gamma 1.0--1.2 X 10(4)) in probably equal molar amounts. These data lead to a hexameric structure (alpha,beta,gamma)6 of the complete enzyme. 4. Pantothenate (5 mol/mol of enzyme) and the essential cysteamine residues were exclusively present in the gamma-chain, the acyl carrier protein of citramalate lyase. The acyl exchange and cleavage functions, probably catalysed by the alpha and beta-subunits, were measured with acyl-CoA derivatives which were able to substitute for the natural acyl carrier. 5. The results demonstrate that citramalate lyase is an enzyme complex with structure and functions closely resembling those of citrate lyase. Although the similarity between citramalate lyase and citrate lyases from various organisms suggests a close evolutionary relationship, these occur in very different, unrelated bacteria. A parallel situation found in the distribution of the nitrogenase system among procaryotes is discussed.  相似文献   

13.
14.
15.
Summary The strictly anaerobic bacterium Clostridium tetanomorphum formed an extracellular lipase when the growth medium contained glycerol in addition to fermentable substrates such as l-glutamate or glucose. The lipase was purified from the concentrated culture supernatant and exhibited a final specific activity of 900 U/mg. The purified lipase had a Stokes’ radius of 5.0 nm and a sedimentation coefficient of 5.7S. The native molecular mass calculated from these values was 118,000 Da, which is considerably higher than the molecular mass calculated by PAGE (70,000 Da). With p-nitrophenyl esters of different fatty acids as substrates enzyme activity was highest when the acyl chain was short (C2). The purified lipase showed no protease or thioesterase activity.  相似文献   

16.
17.
18.
Solventogenic cells of Clostridium thermosaccharolyticum converted the paraffin oil overlay, used to maintain anaerobic conditions, into butanol, ethanol, and isopropanol only under oxyduric conditions.  相似文献   

19.
A clostridial strain has been isolated that produced n-butanol, ethanol, butyrate, and acetate as major fermentation products from glucose but no acetone. At a pH of 6.6, n-butanol was formed by this microorganism only during growth. On the basis of its physiological characteristics and DNA-DNA homology data, the strain was assigned to the "Clostridium tetanomorphum" group (S. Nakamura, I. Okado, T. Abe, and S. Nishida, J. Gen. Microbiol. 113:29-35, 1979). All members of this group were shown to produce n-butanol from glucose as the major fermentation product, whereas C. cochlearium produced it in only minor amounts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号