首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pseudomonas sp. strain Y2 degrades styrene through oxidation to phenylacetic acid via the styABCD operon-encoded enzymes, whose expression is induced in response to styrene by the StyS/StyR two-component regulatory system. Further transformation of phenylacetic acid to tricarboxylic acid cycle intermediates is mediated by the enzymes of paa catabolic genes, whose expression is regulated by the PaaX repressor. The first step of this paa degradation pathway is catalysed by paaF-encoded phenylacetyl-coenzyme A ligases that produce phenylacetyl-coenzyme A. This metabolic intermediate, upon being bound by PaaX, inactivates PaaX-mediated repression of both the paa genes and the styABCD operon. Strain Y2 is unique in having three paaF genes located within two complete copies of the paa gene clusters. Expression of both paaF and paaF3 is controlled by the PaaX repressor. Here we use specific mutants in combination with in vivo and in vitro assays to demonstrate that paaF2, adjacent to the StyS/StyR regulatory genes, belongs to the StyR regulon and is not subject to repression by PaaX. We propose that this unexpected styrene-responsive regulatory strategy for the otherwise metabolically redundant PaaF2 auxiliary enzyme provides a system for rapid co-ordinate de-repression of the two sets of catabolic genes required for styrene degradation.  相似文献   

2.
The pac gene, encoding the penicillin G acylase from Escherichia coli W, is regulated by the PaaX repressor of the phenylacetate catabolic pathway. pac expression depends on the synthesis of phenylacetyl-coenzyme A. PaaX and the cyclic AMP receptor protein (CRP) bind in vitro to the Ppac promoter region. A palindromic sequence proposed as the PaaX operator is located upstream of the -35 box overlapping a CRP binding site, an unusual position that suggests a novel regulatory mechanism.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
This work reports the preparation of two recombinant strains each containing two enzymatic activities mutually expressed through regulated systems for production of functionalized epoxides in one-pot reactions. One strain was Pseudomonas putida PaW340, containing the gene coding for styrene monooxygenase (SMO) from Pseudomonas fluorescens ST under the auto-inducing Ptou promoter and the TouR regulator of Pseudomonas sp. OX1 and the gene coding for naphthalene dihydrodiol dehydrogenase (NDDH) from P. fluorescens N3 under the Ptac promoter inducible by IPTG. The second strain was Escherichia coli JM109, in which the expression of SMO was under the control of the Pnah promoter and the NahR regulator of P. fluorescens N3 inducible by salicylate, while the gene expressing NDDH was under the control of the Plac promoter inducible by IPTG. SMO and NDDH activities were tested in bioconversion experiments using cinnamyl alcohol as reference substrate. The application that we selected is one example of the sequential use of the two enzymatic activities which require a temporal control of the expression of both genes.  相似文献   

11.
12.
13.
14.
15.
We developed a biocatalyst by cloning the styrene monooxygenase genes (styA and styB) from Pseudomonas fluorescens ST responsible for the oxidation of styrene to its corresponding epoxide. Recombinant Escherichia coli was able to oxidize different aryl vinyl and aryl ethenyl compounds to their corresponding optically pure epoxides. The results of bioconversions indicate the broad substrate preference of styrene monooxygenase and its potential for the production of several fine chemicals.  相似文献   

16.
17.
The nucleotide sequence of the 4,377-bp chromosomal region of Pseudomonas fluorescens ST that codes for the oxidation of styrene to phenylacetic acid was determined. Four open reading frames, named styA, styB, styC, and styD, were identified in this region. Sequence analysis and biotransformation assays, performed with batch and continuous cultures, allowed us to identify the functions of the sequenced genes. styA and styB encode a styrene monooxygenase responsible for the transformation of styrene to epoxystyrene; styC codes for the second enzyme of the pathway, an epoxystyrene isomerase that converts epoxystyrene to phenylacetaldehyde; and the styD gene produces a phenylacetaldehyde dehydrogenase that oxidizes phenylacetaldehyde to phenylacetic acid. StyA, 415-amino-acids long, was found to be weakly homologous to p-hydroxybenzoate hydroxylase from both P. fluorescens and P. aeruginosa and to salicylate hydroxylase from P. putida, suggesting that it might be a flavin adenine dinucleotide-binding monooxygenase. StyB was found to be partially homologous to the carboxyterminal part of the 2,4-dichlorophenol-6-monooxygenase encoded by plasmid pJP4, while the styC product did not share significant homology with any known proteins. The fourth open reading frame, styD, could encode a protein of 502 amino acids and was strongly homologous to several eukaryotic and prokaryotic aldehyde dehydrogenases. The order of the genes corresponds to that of the catabolic steps. The previously suggested presence of the gene for epoxystyrene reductase, which directly converts epoxystyrene to 2-phenylethanol (A.M. Marconi, F. Beltrametti, G. Bestetti, F. Solinas, M. Ruzzi, E. Galli, and E. Zennaro, Appl. Environ. Microbiol. 61:121-127, 1996), has not been confirmed by sequencing and by biotransformation assays performed in continuous cultures. A copy of the insertion sequence ISI162, belonging to the IS21-like family of elements, was identified immediately downstream of the styrene catabolic genes.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号