首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The involvement of lipase in flowering is seldom studied, and this research provides evidence that fatty acids produced by lipase affect flowering. OSAG78 encoding a patatin-like protein was isolated from Oncidium Gower Ramsey. OSAG78 fused with green fluorescent protein was found to localize at the cell membrane. Transgenic Arabidopsis overexpressing OSAG78 demonstrated higher lipase activity than the wild-type control. In addition, the amount of free linoleic acid and linolenic acid in transgenic Arabidopsis was found to be higher than that in the wild type. Transgenics overexpressing OSAG78 exhibited altered phenotypes, including smaller leaves and rounder flowers, and also demonstrated a late flowering phenotype that could be rescued by gibberellin A(3) (GA(3)) application. Several flowering-related genes were analyzed, indicating that the expression of gibberellin-stimulated genes was decreased in the plants overexpressing OSAG78. Also, the expression of AtGA2ox1, AtGA3ox1 and AtGA20ox1 genes encoding GA2-, GA3- and GA20-oxidases, respectively, which are mainly responsible for gibberellin metabolism, was decreased, and the level of GA(4), a bioactive gibberellin, measured by gas chromatography-mass spectrometry was also reduced in the overexpressing lines. Furthermore, the expression levels of AtGA3ox1 and AtGA20ox1 were significantly decreased in wild-type Arabidopsis treated with linoleic acid, linolenic acid or methyl jasmonate. The membrane-bound OSAG78 might hydrolyze phospholipids to release linoleic acid and linolenic acid, and then depress the expression of genes encoding GA3- and GA20-oxidase. These changes reduced the bioactive gibberellin level, and, finally, late flowering occurred. Our results indicate that a patatin-like membrane protein with lipase activity affects flowering through the regulation of gibberellin metabolism.  相似文献   

3.
4.
5.
In an attempt to improve stress tolerance of tomato (Lycopersicon esculentum) plants, an expression vector containing an Arabidopsis C-repeat/dehydration responsive element binding factor 1 (CBF1) cDNA driven by a cauliflower mosaic virus 35S promoter was transferred into tomato plants. Transgenic expression of CBF1 was proved by northern- and western-blot analyses. The degree of chilling tolerance of transgenic T(1) and T(2) plants was found to be significantly greater than that of wild-type tomato plants as measured by survival rate, chlorophyll fluorescence value, and radical elongation. The transgenic tomato plants exhibited patterns of growth retardation; however, they resumed normal growth after GA(3) (gibberellic acid) treatment. More importantly, GA(3)-treated transgenic plants still exhibited a greater degree of chilling tolerance compared with wild-type plants. Subtractive hybridization was performed to isolate the responsive genes of heterologous Arabidopsis CBF1 in transgenic tomato plants. CATALASE1 (CAT1) was obtained and showed activation in transgenic tomato plants. The CAT1 gene and catalase activity were also highly induced in the transgenic tomato plants. The level of H(2)O(2) in the transgenic plants was lower than that in the wild-type plants under either normal or cold conditions. The transgenic plants also exhibited considerable tolerance against oxidative damage induced by methyl viologen. Results from the current study suggest that heterologous CBF1 expression in transgenic tomato plants may induce several oxidative-stress responsive genes to protect from chilling stress.  相似文献   

6.
A survey of the Arabidopsis thaliana databases revealed that single C2H2 zinc finger protein genes comprise a large gene family (approximately 30 genes). No known phenotype has been associated with any of these genes except SUPERMAN. One of these genes, designated AtZFP10 (A. thaliana single zinc finger protein), was isolated by RT-PCR in the present study. The AtZFP10 gene was expressed at low levels in the flowers, axillary meristems and siliques, and at very low levels in the stems in Arabidopsis. Overexpression of the AtZFP10 gene driven by a constitutive promoter resulted in abnormal Arabidopsis plants and only one plant was recovered. Tobacco plants overexpressing the AtZFP10 gene displayed dwarfing, abnormal leaf phenotypes and early flowering that correlated with the level of expression of the AtZFP10 gene. No differences were observed in cell size between the AtZFP10 transgenic plants and the wild-type plants. Application of exogenous GA3 did not restore the wild-type phenotype, but it did reduce the dwarfing phenotype. Deletion of the leucine-rich region at the carboxyl terminus of the AtZFP10 gene resulted in transgenic plants that were not phenotypically different from wild-type plants suggesting a role for the leucine-rich region as essential for normal function.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
The circadian clock acts as the timekeeping mechanism in photoperiodism. In Arabidopsis thaliana, a circadian clock-controlled flowering pathway comprising the genes GIGANTEA (GI), CONSTANS (CO), and FLOWERING LOCUS T (FT) promotes flowering specifically under long days. Within this pathway, GI regulates circadian rhythms and flowering and acts earlier in the hierarchy than CO and FT, suggesting that GI might regulate flowering indirectly by affecting the control of circadian rhythms. We studied the relationship between the roles of GI in flowering and the circadian clock using late elongated hypocotyl circadian clock associated1 double mutants, which are impaired in circadian clock function, plants overexpressing GI (35S:GI), and gi mutants. These experiments demonstrated that GI acts between the circadian oscillator and CO to promote flowering by increasing CO and FT mRNA abundance. In addition, circadian rhythms in expression of genes that do not control flowering are altered in 35S:GI and gi mutant plants under continuous light and continuous darkness, and the phase of expression of these genes is changed under diurnal cycles. Therefore, GI plays a general role in controlling circadian rhythms, and this is different from its effect on the amplitude of expression of CO and FT. Functional GI:green fluorescent protein is localized to the nucleus in transgenic Arabidopsis plants, supporting the idea that GI regulates flowering in the nucleus. We propose that the effect of GI on flowering is not an indirect effect of its role in circadian clock regulation, but rather that GI also acts in the nucleus to more directly promote the expression of flowering-time genes.  相似文献   

17.
The asymmetric leaves 1 ( as1 ) and as2 mutants of Arabidopsis thaliana exhibit pleiotropic phenotypes. Expression of a number of genes, including three class-1 KNOTTED -like homeobox ( KNOX ) genes ( BP , KNAT2 and KNAT6 ) and ETTIN / ARF3 , is enhanced in these mutants. In the present study, we attempted to identify the phenotypic features of as1 and as2 mutants that were generated by ectopic expression of KNOX genes, using multiple loss-of-function mutations of KNOX genes as well as as1 and as2 . Our results revealed that the ectopic expression of class-1 KNOX genes resulted in reductions in the sizes of leaves, reductions in the size of sepals and petals, the formation of a less prominent midvein, the repression of adventitious root formation and late flowering. Our results also revealed that the reduction in leaf size and late flowering were caused by the repression, by KNOX genes, of a gibberellin (GA) pathway in as1 and as2 plants. The formation of a less prominent midvein and the repression of adventitious root formation were not, however, related to the GA pathway. The asymmetric formation of leaf lobes, the lower complexity of higher-ordered veins, and the elevated frequency of adventitious shoot formation on leaves of as1 and as2 plants were not rescued by multiple mutations in KNOX genes. These features must, therefore, be controlled by other genes in which expression is enhanced in the as1 and as2 mutants.  相似文献   

18.
M Ishitani  L Xiong  H Lee  B Stevenson    J K Zhu 《The Plant cell》1998,10(7):1151-1161
Low-temperature stress induces the expression of a variety of genes in plants. However, the signal transduction pathway(s) that activates gene expression under cold stress is poorly understood. Mutants defective in cold signaling should facilitate molecular analysis of plant responses to low temperature and eventually lead to the identification and cloning of a cold stress receptor(s) and intracellular signaling components. In this study, we characterize a plant mutant affected in its response to low temperatures. The Arabidopsis hos1-1 mutation identified by luciferase imaging causes superinduction of cold-responsive genes, such as RD29A, COR47, COR15A, KIN1, and ADH. Although these genes are also induced by abscisic acid, high salt, or polyethylene glycol in addition to cold, the hos1-1 mutation only enhances their expression under cold stress. Genetic analysis revealed that hos1-1 is a single recessive mutation in a nuclear gene. Our studies using the firefly luciferase reporter gene under the control of the cold-responsive RD29A promoter have indicated that cold-responsive genes can be induced by temperatures as high as 19 degrees C in hos1-1 plants. In contrast, wild-type plants do not express the luciferase reporter at 10 degrees C or higher. Compared with the wild type, hos1-1 plants are l ess cold hardy. Nonetheless, after 2 days of cold acclimation, hos1-1 plants acquired the same degree of freezing tolerance as did the wild type. The hos1-1 plants flowered earlier than did the wild-type plants and appeared constitutively vernalized. Taken together, our findings show that the HOS1 locus is an important negative regulator of cold signal transduction in plant cells and that it plays critical roles in controlling gene expression under cold stress, freezing tolerance, and flowering time.  相似文献   

19.
拟南芥漆酶基因AtLAC4参与生长及非生物胁迫响应   总被引:2,自引:0,他引:2  
植物漆酶基因家族在拟南芥(Arabidopsis thaliana)中共有17个成员,目前各基因的具体功能尚不十分清楚.该研究利用过量表达的方法初步分析了拟南芥AtLAC4的功能.GUS染色显示AtLAC4在拟南芥的维管组织中有较强的表达,并在叶片排水器中特异表达.AtLAC4过量表达导致植株木质素含量增多、次生壁加厚、植株变小和莲座叶叶柄变短.ABA对AtLAC4的表达具有明显的诱导作用,AtLAC4过量表达植株对外源ABA敏感;干旱处理后,AtLAC4过量表达植株的耐旱能力比野生型明显增强.以上结果表明,AtLAC4基因在调控植物生长发育及非生物胁迫响应中具有重要作用.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号