首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During cytokinesis the cytoplasm of a cell is divided to form two daughter cells. In animal cells, the existing plasma membrane is first constricted and then abscised to generate two individual plasma membranes. Plant cells on the other hand divide by forming an interior dividing wall, the so-called cell plate, which is constructed by localized deposition of membrane and cell wall material. Construction starts in the centre of the cell at the locus of the mitotic spindle and continues radially towards the existing plasma membrane. Finally the membrane of the cell plate and plasma membrane fuse to form two individual plasma membranes. Two microtubule-based cytoskeletal networks, the phragmoplast and the pre-prophase band (PPB), jointly control cytokinesis in plants. The bipolar microtubule array of the phragmoplast regulates cell plate deposition towards a cortical position that is templated by the ring-shaped microtubule array of the PPB. In contrast to most animal cells, plants do not use centrosomes as foci of microtubule growth initiation. Instead, plant microtubule networks are striking examples of self-organizing systems that emerge from physically constrained interactions of dispersed microtubules. Here we will discuss how microtubule-based activities including growth, shrinkage, severing, sliding, nucleation and bundling interrelate to jointly generate the required ordered structures. Evidence mounts that adapter proteins sense the local geometry of microtubules to locally modulate the activity of proteins involved in microtubule growth regulation and severing. Many of the proteins and mechanisms involved have roles in other microtubule assemblies as well, bestowing broader relevance to insights gained from plants.  相似文献   

2.
Polarized membrane trafficking during plant cytokinesis and cell expansion are critical for plant morphogenesis, yet very little is known about the molecular mechanisms that guide this process. Dynamin and dynamin-related proteins are large GTP binding proteins that are involved in membrane trafficking. Here, we show that two functionally redundant members of the Arabidopsis dynamin-related protein family, ADL1A and ADL1E, are essential for polar cell expansion and cell plate biogenesis. adl1A-2 adl1E-1 double mutants show defects in cell plate assembly, cell wall formation, and plasma membrane recycling. Using a functional green fluorescent protein fusion protein, we show that the distribution of ADL1A is dynamic and that the protein is localized asymmetrically to the plasma membrane of newly formed and mature root cells. We propose that ADL1-mediated membrane recycling is essential for plasma membrane formation and maintenance in plants.  相似文献   

3.
Cytokinesis, the final stage of the cell cycle, is an essential step toward the formation of two viable daughter cells. In recent years, membrane trafficking has been shown to be important for the completion of cytokinesis. Vesicles originating from both the endocytic and secretory pathways are known to be shuttled to the plasma membrane of the ingressing cleavage furrow, delivering membrane and proteins to this dynamic region. Advances in cell imaging have led to exciting new discoveries regarding vesicle movement in living cells. Recent work has revealed a significant role for membrane trafficking, as controlled by regulatory proteins, during cytokinesis in animal cells. The endocytic and secretory pathways as well as motor proteins are revealed to be essential in the delivery of vesicles to the cleavage furrow during cytokinesis.  相似文献   

4.
Building a complex structure such as the cell wall, with many individual parts that need to be assembled correctly from distinct sources within the cell, is a well-orchestrated process. Additional complexity is required to mediate dynamic responses to environmental and developmental cues. Enzymes, sugars, and other cell wall components are constantly and actively transported to and from the plasma membrane during diffuse growth. Cell wall components are transported in vesicles on cytoskeletal tracks composed of microtubules and actin filaments. Many of these components, and additional proteins, vesicles, and lipids are trafficked to and from the cell plate during cytokinesis. In this review, we first discuss how the cytoskeleton is initially organized to add new cell wall material or to build a new cell wall, focusing on similarities during these processes. Next, we discuss how polysaccharides and enzymes that build the cell wall are trafficked to the correct location by motor proteins and through other interactions with the cytoskeleton. Finally, we discuss some of the special features of newly formed cell walls generated during cytokinesis.

The cell wall is assembled via vesicle trafficking along cytoskeletal filaments during growth and division.  相似文献   

5.
The polarized transport of the phytohormone auxin [1], which is crucial for the regulation of different stages of plant development [2, 3], depends on the asymmetric plasma membrane distribution of the PIN-FORMED (PIN) auxin efflux carriers [4,?5]. The PIN polar localization results from clathrin-mediated endocytosis (CME) from the plasma membrane and subsequent polar recycling [6]. The Arabidopsis genome encodes two groups of dynamin-related proteins (DRPs) that show homology to mammalian dynamin-a protein required for fission of endocytic vesicles during CME [7, 8]. Here we show by coimmunoprecipitation (coIP), bimolecular fluorescence complementation (BiFC), and F?rster resonance energy transfer (FRET) that members of the DRP1 group closely associate with PIN proteins at the cell plate. Localization and phenotypic analysis of novel drp1 mutants revealed a requirement for DRP1 function in correct PIN distribution and in auxin-mediated development. We propose that rapid and specific internalization of PIN proteins mediated by the DRP1 proteins and the associated CME machinery from the cell plate membranes during cytokinesis is an important mechanism for proper polar PIN positioning in interphase cells.  相似文献   

6.
During plant cytokinesis membrane vesicles are efficiently delivered to the cell-division plane, where they fuse with one another to form a laterally expanding cell plate. These membrane vesicles were generally believed to originate from Golgi stacks. Recently, however, it was proposed that endocytosis contributes substantially to cell-plate formation. To determine the relative contributions of secretory and endocytic traffic to cytokinesis, we specifically inhibited either or both trafficking pathways in Arabidopsis. Blocking traffic to the division plane after the two pathways had converged at the trans-Golgi network disrupted cytokinesis and resulted in binucleate cells, whereas impairment of endocytosis alone did not interfere with cytokinesis. By contrast, inhibiting ER-Golgi traffic by eliminating the relevant BFA-resistant ARF-GEF caused retention of newly synthesized proteins, such as the cytokinesis-specific syntaxin KNOLLE in the ER, and prevented the formation of the partitioning membrane. Our results suggest that during plant cytokinesis, unlike animal cytokinesis, protein secretion is absolutely essential, whereas endocytosis is not.  相似文献   

7.
Membranes of eukaryotic cells contain high lipid‐order sterol‐rich domains that are thought to mediate temporal and spatial organization of cellular processes. Sterols are crucial for execution of cytokinesis, the last stage of cell division, in diverse eukaryotes. The cell plate of higher‐plant cells is the membrane structure that separates daughter cells during somatic cytokinesis. Cell‐plate formation in Arabidopsis relies on sterol‐ and DYNAMIN‐RELATED PROTEIN1A (DRP1A)‐dependent endocytosis. However, functional relationships between lipid membrane order or lipid packing and endocytic machinery components during eukaryotic cytokinesis have not been elucidated. Using ratiometric live imaging of lipid order‐sensitive fluorescent probes, we show that the cell plate of Arabidopsis thaliana represents a dynamic, high lipid‐order membrane domain. The cell‐plate lipid order was found to be sensitive to pharmacological and genetic alterations of sterol composition. Sterols co‐localize with DRP1A at the cell plate, and DRP1A accumulates in detergent‐resistant membrane fractions. Modifications of sterol concentration or composition reduce cell‐plate membrane order and affect DRP1A localization. Strikingly, DRP1A function itself is essential for high lipid order at the cell plate. Our findings provide evidence that the cell plate represents a high lipid‐order domain, and pave the way to explore potential feedback between lipid order and function of dynamin‐related proteins during cytokinesis.  相似文献   

8.
Zhang L  Zhang H  Liu P  Hao H  Jin JB  Lin J 《PloS one》2011,6(10):e26129

Background

Cell plate formation during plant cytokinesis is facilitated by SNARE complex-mediated vesicle fusion at the cell-division plane. However, our knowledge regarding R-SNARE components of membrane fusion machinery for cell plate formation remains quite limited.

Methodology/Principal Findings

We report the in vivo function of Arabidopsis VAMP721 and VAMP722, two closely sequence-related R-SNAREs, in cell plate formation. Double homozygous vamp721vamp722 mutant seedlings showed lethal dwarf phenotypes and were characterized by rudimentary roots, cotyledons and hypocotyls. Furthermore, cell wall stubs and incomplete cytokinesis were frequently observed in vamp721vamp722 seedlings. Confocal images revealed that green fluorescent protein-tagged VAMP721 and VAMP722 were preferentially localized to the expanding cell plates in dividing cells. Drug treatments and co-localization analyses demonstrated that punctuate organelles labeled with VAMP721 and VAMP722 represented early endosomes overlapped with VHA-a1-labeled TGN, which were distinct from Golgi stacks and prevacuolar compartments. In addition, protein traffic to the plasma membrane, but not to the vacuole, was severely disrupted in vamp721vamp722 seedlings by subcellular localization of marker proteins.

Conclusion/Significance

These observations suggest that VAMP721 and VAMP722 are involved in secretory trafficking to the plasma membrane via TGN/early endosomal compartment, which contributes substantially to cell plate formation during plant cytokinesis.  相似文献   

9.
The cell wall, a crucial cell compartment, is composed of a network of polysaccharides and proteins, providing structural support and protection from external stimuli. While the cell wall structure and biosynthesis have been extensively studied, very little is known about the transport of polysaccharides and other components into the developing cell wall. This review focuses on endomembrane trafficking pathways involved in cell wall deposition. Cellulose synthase complexes are assembled in the Golgi, and are transported in vesicles to the plasma membrane. Non-cellulosic polysaccharides are synthesized in the Golgi apparatus, whereas cellulose is produced by enzyme complexes at the plasma membrane. Polysaccharides and enzymes that are involved in cell wall modification and assembly are transported by distinct vesicle types to their destinations; however, the precise mechanisms involved in selection, sorting and delivery remain to be identified. The endomembrane system orchestrates the delivery of Golgi-derived and possibly endocytic vesicles carrying cell wall and cell membrane components to the newly-formed cell plate. However, the nature of these vesicles, their membrane compositions, and the timing of their delivery are largely unknown. Emerging technologies such as chemical genomics and proteomics are promising avenues to gain insight into the trafficking of cell wall components.  相似文献   

10.
Song K  Jang M  Kim SY  Lee G  Lee GJ  Kim DH  Lee Y  Cho W  Hwang I 《Plant physiology》2012,159(3):1013-1025
Cytokinesis is the process of partitioning the cytoplasm of a dividing cell, thereby completing mitosis. Cytokinesis in the plant cell is achieved by the formation of a new cell wall between daughter nuclei using components carried in Golgi-derived vesicles that accumulate at the midplane of the phragmoplast and fuse to form the cell plate. Proteins that play major roles in the development of the cell plate in plant cells are not well defined. Here, we report that an AP180 amino-terminal homology/epsin amino-terminal homology domain-containing protein from Arabidopsis (Arabidopsis thaliana) is involved in clathrin-coated vesicle formation from the cell plate. Arabidopsis Epsin-like Clathrin Adaptor1 (AtECA1; At2g01600) and its homologous proteins AtECA2 and AtECA4 localize to the growing cell plate in cells undergoing cytokinesis and also to the plasma membrane and endosomes in nondividing cells. AtECA1 (At2g01600) does not localize to nascent cell plates but localizes at higher levels to expanding cell plates even after the cell plate fuses with the parental plasma membrane. The temporal and spatial localization patterns of AtECA1 overlap most closely with those of the clathrin light chain. In vitro protein interaction assays revealed that AtECA1 binds to the clathrin H chain via its carboxyl-terminal domain. These results suggest that these AP180 amino-terminal homology/epsin amino-terminal homology domain-containing proteins, AtECA1, AtECA2, and AtECA4, may function as adaptors of clathrin-coated vesicles budding from the cell plate.  相似文献   

11.
Cytokinesis is the final step of cell division and leads to the physical separation of the daughter cells. After the ingression of a cleavage membrane furrow that pinches the mother cell, future daughter cells spend much of the cytokinesis phase connected by an intercellular bridge. Rab proteins are major regulators of intracellular transport in eukaryotes, and here, we report an essential role for human Rab35 in both the stability of the bridge and its final abscission. We find that Rab35, whose function in membrane traffic was unknown, is localized to the plasma membrane and endocytic compartments and controls a fast endocytic recycling pathway. Consistent with a key requirement for Rab35-regulated recycling during cell division, inhibition of Rab35 function leads to the accumulation of endocytic markers on numerous cytoplasmic vacuoles in cells that failed cytokinesis. Moreover, Rab35 is involved in the intercellular bridge localization of two molecules essential for the postfurrowing steps of cytokinesis: the phosphatidylinositol 4,5-bis phosphate (PIP2) lipid and the septin SEPT2. We propose that the Rab35-regulated pathway plays an essential role during the terminal steps of cytokinesis by controlling septin and PIP2 subcellular distribution during cell division.  相似文献   

12.
The Arabidopsis KNOLLE Protein Is a Cytokinesis-specific Syntaxin   总被引:11,自引:0,他引:11  
In higher plant cytokinesis, plasma membrane and cell wall originate by vesicle fusion in the plane of cell division. The Arabidopsis KNOLLE gene, which is required for cytokinesis, encodes a protein related to vesicle-docking syntaxins. We have raised specific rabbit antiserum against purified recombinant KNOLLE protein to show biochemically and by immunoelectron microscopy that KNOLLE protein is membrane associated. Using immunofluorescence microscopy, KNOLLE protein was found to be specifically expressed during mitosis and, unlike the plasma membrane H+-ATPase, to localize to the plane of division during cytokinesis. Arabidopsis dynamin-like protein ADL1 accumulates at the plane of cell plate formation in knolle mutant cells as in wild-type cells, suggesting that cytokinetic vesicle traffic is not affected. Furthermore, electron microscopic analysis indicates that vesicle fusion is impaired. KNOLLE protein was detected in mitotically dividing cells of various parts of the developing plant, including seedling root, inflorescence meristem, floral meristems and ovules, and the cellularizing endosperm, but not during cytokinesis after the male second meiotic division. Thus, KNOLLE is the first syntaxin-like protein that appears to be involved specifically in cytokinetic vesicle fusion.  相似文献   

13.
Plant cytokinesis, a fundamental process of plant life, involves de novo formation of a “cell plate” partitioning the cytoplasm of dividing cells. Cell plate formation is directed by orchestrated delivery, fusion of cytokinetic vesicles, and membrane maturation to form a nascent cell wall by timely deposition of polysaccharides. During cell plate maturation, the fragile membrane network transitions to a fenestrated sheet and finally a young cell wall. Here, we approximated cell plate sub-structures with testable shapes and adopted the Helfrich-free energy model for membranes, including a stabilizing and spreading force, to understand the transition from a vesicular network to a fenestrated sheet and mature cell plate. Regular cell plate development in the model was possible, with suitable bending modulus, for a two-dimensional late stage spreading force of 2–6 pN/nm, an osmotic pressure difference of 2–10 kPa, and spontaneous curvature between 0 and 0.04 nm−1. With these conditions, stable membrane conformation sizes and morphologies emerged in concordance with stages of cell plate development. To reach a mature cell plate, our model required the late-stage onset of a spreading/stabilizing force coupled with a concurrent loss of spontaneous curvature. Absence of a spreading/stabilizing force predicts failure of maturation. The proposed model provides a framework to interrogate different players in late cytokinesis and potentially other membrane networks that undergo such transitions. Callose, is a polysaccharide that accumulates transiently during cell plate maturation. Callose-related observations were consistent with the proposed model’s concept, suggesting that it is one of the factors involved in establishing the spreading force.

The late-stage onset of an “areal” spreading and stabilizing force is essential for regular plant cell plate development and maturation.  相似文献   

14.
During cytokinesis a new crosswall is rapidly laid down. This process involves the formation at the cell equator of a tubulo‐vesicular membrane network (TVN). This TVN evolves into a tubular network (TN) and a planar fenestrated sheet, which extends at its periphery before fusing to the mother cell wall. The role of cell wall polymers in cell plate assembly is poorly understood. We used specific stains and GFP‐labelled cellulose synthases (CESAs) to show that cellulose, as well as three distinct CESAs, accumulated in the cell plate already at the TVN stage. This early presence suggests that cellulose is extruded into the tubular membrane structures of the TVN. Co‐localisation studies using GFP–CESAs suggest the delivery of cellulose synthase complexes (CSCs) to the cell plate via phragmoplast‐associated vesicles. In the more mature TN part of the cell plate, we observed delivery of GFP–CESA from doughnut‐shaped organelles, presumably Golgi bodies. During the conversion of the TN into a planar fenestrated sheet, the GFP–CESA density diminished, whereas GFP–CESA levels remained high in the TVN zone at the periphery of the expanding cell plate. We observed retrieval of GFP–CESA in clathrin‐containing structures from the central zone of the cell plate and from the plasma membrane of the mother cell, which may contribute to the recycling of CESAs to the peripheral growth zone of the cell plate. These observations, together with mutant phenotypes of cellulose‐deficient mutants and pharmacological experiments, suggest a key role for cellulose synthesis already at early stages of cell plate assembly.  相似文献   

15.
Cell reproduction is a complex process involving whole cell structures and machineries in space and time, resulting in regulated distribution of endomembranes, organelles, and genomes between daughter cells. Secretory pathways supported by the activity of the Golgi apparatus play a crucial role in cytokinesis in plants. From the onset of phragmoplast initiation to the maturation of the cell plate, delivery of secretory vesicles is necessary to sustain successful daughter cell separation. Tethering of secretory vesicles at the plasma membrane is mediated by the evolutionarily conserved octameric exocyst complex. Using proteomic and cytologic approaches, we show that EXO84b is a subunit of the plant exocyst. Arabidopsis thaliana mutants for EXO84b are severely dwarfed and have compromised leaf epidermal cell and guard cell division. During cytokinesis, green fluorescent protein–tagged exocyst subunits SEC6, SEC8, SEC15b, EXO70A1, and EXO84b exhibit distinctive localization maxima at cell plate initiation and cell plate maturation, stages with a high demand for vesicle fusion. Finally, we present data indicating a defect in cell plate assembly in the exo70A1 mutant. We conclude that the exocyst complex is involved in secretory processes during cytokinesis in Arabidopsis cells, notably in cell plate initiation, cell plate maturation, and formation of new primary cell wall.  相似文献   

16.
Higher plants have evolved specific mechanisms for partitioning the cytoplasm of dividing cells. In the predominant mode of phragmoplast-assisted cytokinesis, a cell wall and flanking plasma membranes are made de novo from a transient membrane compartment, the cell plate, which in turn forms by vesicle fusion from the centre to the periphery of the dividing cell. Other modes of cytokinesis appear to occur in meiotic cells and developing gametophytes. Here we review recent progress in the analysis of plant cytokinesis, focusing on genetic studies in Arabidopsis which are beginning to identify structural and regulatory components of phragmoplast-assisted cytokinesis. Two classes of mutations have been described. In one class, the defects appear to be confined to cell plate formation, suggesting that the execution of cytokinesis is specifically affected. Mutations in the other class display more general defects in cell division. We also discuss possible roles of proteins that have been localised in cytokinetic cells but not characterised genetically. Finally, mutations affecting meiotic or gametophytic cell divisions suggest that mechanistically different modes of cytokinesis occur in higher plants.  相似文献   

17.
Rab8 is a monomeric GTPase that regulates the delivery of newly synthesized proteins to the basolateral surface in polarized epithelial cells. Recent publications have demonstrated that basolateral proteins interacting with the mu1-B clathrin adapter subunit pass through the recycling endosome (RE) en route from the TGN to the plasma membrane. Because Rab8 interacts with these basolateral proteins, these findings raise the question of whether Rab8 acts before, at, or after the RE. We find that Rab8 overexpression during the formation of polarity in MDCK cells, disrupts polarization of the cell, explaining how Rab8 mutants can disrupt basolateral endocytic and secretory traffic. However, once cells are polarized, Rab8 mutants cause mis-sorting of newly synthesized basolateral proteins such as VSV-G to the apical surface, but do not cause mis-sorting of membrane proteins already at the cell surface or in the endocytic recycling pathway. Enzymatic ablation of the RE also prevents traffic from the TGN from reaching the RE and similarly results in mis-sorting of newly synthesized VSV-G. We conclude that Rab8 regulates biosynthetic traffic through REs to the plasma membrane, but not trafficking of endocytic cargo through the RE. The data are consistent with a model in which Rab8 functions in regulating the delivery of TGN-derived cargo to REs.  相似文献   

18.
The primary plant cell wall is laid down over a brief period of time during cytokinesis. Initially, a membrane network forms at the equator of a dividing cell. The cross-wall is then assembled and remodeled within this membrane compartment. Callose is the predominant luminal component of the nascent cross-wall or cell plate, but is not a component of intact mature cell walls, which are composed primarily of cellulose, pectins and xyloglucans. Widely accepted models postulate that callose comprises a transient, rapid spreading force for the expansion of membrane networks during cytokinesis. In this study, we clone and characterize an Arabidopsis gene, MASSUE / AtGSL8 , which encodes a putative callose synthase. massue mutants are seedling-lethal and have a striking cytokinesis-defective phenotype. Callose deposition was delayed in the cell plates of massue mutants. Mutant cells were occasionally bi- or multi-nucleate, with cell-wall stubs, and we frequently observed gaps at the junction between cross-walls and parental cell walls. The results suggest that the timely deposition of callose is essential for the completion of plant cytokinesis. Surprisingly, confocal analysis revealed that the cell-plate membrane compartment forms and expands, seemingly as far as the parental wall, prior to the appearance of callose. We discuss the possibility that callose may be required to establish a lasting connection between the nascent cross-wall and the parental cell wall.  相似文献   

19.
Zuo J  Niu QW  Nishizawa N  Wu Y  Kost B  Chua NH 《The Plant cell》2000,12(7):1137-1152
The formation of the cell plate, a unique structure in dividing plant cells, is pivotal for cytokinesis. A mutation in the Arabidopsis KORRIGAN (KOR) gene causes the formation of aberrant cell plates, incomplete cell walls, and multinucleated cells, leading to severely abnormal seedling morphology. The mutant, designed kor1-2, was identified as a stronger allele than the previously identified kor1-1, which appears to be defective only in cell elongation. KOR1 encodes an endo-1,4-beta-d-glucanase with a transmembrane domain and two putative polarized targeting signals in the cytosolic tail. When expressed in tobacco BY2 cells, a KOR1-GFP (green fluorescence protein) fusion protein was localized to growing cell plates. Substitution mutations in the polarized targeting motifs of KOR1 caused the fusion proteins to localize to the plasma membrane as well. Expression of these mutant genes in kor1-2 plants complemented only the cell elongation defect but not the cytokinesis defect, indicating that polarized targeting of KOR1 to forming cell plates is essential for cytokinesis. Our results suggest that KOR1 plays a critical role during cytokinesis.  相似文献   

20.
Chow CM  Neto H  Foucart C  Moore I 《The Plant cell》2008,20(1):101-123
The Ypt3/Rab11/Rab25 subfamily of Rab GTPases has expanded greatly in Arabidopsis thaliana, comprising 26 members in six provisional subclasses, Rab-A1 to Rab-A6. We show that the Rab-A2 and Rab-A3 subclasses define a novel post-Golgi membrane domain in Arabidopsis root tips. The Rab-A2/A3 compartment was distinct from but often close to Golgi stacks and prevacuolar compartments and partly overlapped the VHA-a1 trans-Golgi compartment. It was also sensitive to brefeldin A and accumulated FM4-64 before prevacuolar compartments did. Mutations in RAB-A2a that were predicted to stabilize the GDP- or GTP-bound state shifted the location of the protein to the Golgi or plasma membrane, respectively. In mitosis, KNOLLE accumulated principally in the Rab-A2/A3 compartment. During cytokinesis, Rab-A2 and Rab-A3 proteins localized precisely to the growing margins of the cell plate, but VHA-a1, GNOM, and prevacuolar markers were excluded. Inducible expression of dominant-inhibitory mutants of RAB-A2a resulted in enlarged, polynucleate, meristematic cells with cell wall stubs. The Rab-A2/A3 compartment, therefore, is a trans-Golgi compartment that communicates with the plasma membrane and early endosomal system and contributes substantially to the cell plate. Despite the unique features of plant cytokinesis, membrane traffic to the division plane exhibits surprising molecular similarity across eukaryotic kingdoms in its reliance on Ypt3/Rab11/Rab-A GTPases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号