首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The modulation of striatal cholinergic neurons by somatostatin (SOM) was studied by measuring the release of acetylcholine (ACh) in the striatum of freely moving rats. The samples were collected via a transversal microdialysis probe. ACh level in the dialysate was measured by the high performance liquid chromatography method with an electrochemical detector. Local administration of SOM (0.1, 0.5 and 1 microM) produced a long-lasting and concentration-dependent increase in the basal striatal ACh output. The stimulant effect of SOM was antagonized by the SOM receptor antagonist cyclo(7-aminopentanoyl-Phe-D-Trp-Lys-Thr[BZL]) (1 microM). In a series of experiments, we studied the effect of 6,7-dinitroquinoxaline-2, 3-dione (DNQX), a selective non-NMDA (N-methyl-D-aspartate) glutamatergic antagonist, on the basal and SOM-induced ACh release from the striatum. DNQX, 2 microM, perfused through the striatum had no effect on the basal ACh output but inhibited the SOM (1 microM)-induced ACh release. The non-NMDA glutamatergic receptor antagonist 1-(4-aminophenyl)-4-methyl-7,8-methylendioxy-5H-2,3- benzodiazepine (GYKI-52466), 10 microM, antagonized the SOM (1 microM)-induced release of ACh in the striatum. Local administration of the NMDA glutamatergic receptor antagonist, 2-amino-5-phosphonopentanoic acid (APV), 100 microM, blocked SOM (1 microM)-evoked ACh release. Local infusion of tetrodotoxin (1 microM) decreased the basal release of ACh and abolished the 1 microM SOM-induced increase in ACh output suggesting that the stimulated release of ACh depends on neuronal firing. The present results are the first to demonstrate a neuromodulatory role of SOM in the regulation of cholinergic neuronal activity of the striatum of freely moving rats. The potentiating effect of SOM on ACh release in the striatum is mediated (i) by SOM receptor located on glutamatergic nerve terminals, and (ii) by NMDA and non-NMDA glutamatergic receptors located on dendrites of cholinergic interneurones of the striatum.  相似文献   

2.
Species differences have been observed in the effect of cholecystokinin octapeptide (CCK OP) on the canine and guinea pig gallbladder smooth muscle motility. 1. CCK OP was more potent stimulant in canine than in guinea pig gallbladder smooth muscles. Its pD2 values were 10 and 9.2, respectively. 2. The acetylcholine (10(-4) M)-induced maximum contractions in canine gallbladder muscle strips were by 50% lower as compared to the CCK OP (10(-8) M) maximum responses while in guinea pig gallbladder muscle strips the acetylcholine (ACh) maximum responses were by 20% lower than the CCK OP maximum responses. 3. CCK OP increased [3H]ACh release by 27% in canine gallbladder and by 40% in guinea pig gallbladder. 4. Somatostatin (SOM) had not any direct myogenic effect in guinea pig and canine gallbladder but it decreased [3H]ACh release from gallbladder intrinsic cholinergic neurons.  相似文献   

3.
Cholinergic neurons from the septum area, the vertical limb of the diagonal band of Broca, and the nucleus basalis of Meynert of postnatal 13-day-old rats were cultured with or without nerve growth factor (NGF) conditions. Total choline acetyltransferase (ChAT) activities, acetylcholine (ACh) contents, and survival numbers of cholinergic neurons in culture from each of three distinct regions were increased by NGF treatment, but little difference was found in cellular ChAT activities and ACh contents obtained in cultures with or without NGF. The result shows that NGF promotes the survival of cholinergic neurons from 13-day-old rats. Furthermore, the release of ACh from cultured neurons was investigated. The cells cultured with NGF showed a larger increase of the high K+-evoked ACh release than those cultured without NGF. However, NGF had no effect on spontaneous release. This suggests that NGF could regenerate and sustain the stimulation-evoked release mechanisms of ACh in cultured cholinergic neurons from postnatal rats.  相似文献   

4.
Glutamate (Glut), acetylcholine (ACh) and dopamine (DA) were iontophoretically applied on cat claustral neurons. Glut did not affect all the neurons; ACh had both excitatory and inhibitory effects, while DA was prevalently inhibitory. An analysis was made of the time-course of excitatory and inhibitory responses on the basis of the mean firing rate variations during and after ACh and DA release. Three types of responses are described for each drug: short lasting inhibition, long lasting inhibition and long lasting excitation. The experimental data were statistically elaborated. The effects of ACh and of DA were compared with those of activation obtained by sensorial peripheric and thalamic stimulations. ACh could be supposed to be the transmitter of most of the inhibitory terminals of these sensitive afferences to the claustrum.  相似文献   

5.
1. The longitudinal and circular muscle layers of canine colon showed a different pattern of mechanical activity: regular rhythmic phasic contractions in the circular strips and irregular rhythmic prolonged contractions in the longitudinal strips.2. The spontaneous motility of both layers was suppressed by atropine (1 μM) or hexamethonium (1 μM), suggesting the involvement of ACh.3. Somatostatin (1 nM–1μM) decreased, while CCK8 (1–10 nM) increased the spontaneous and electrically-induced contractions of the colonic muscles, the circular layer being more sensitive as compared to the longitudinal layer.4. CCK8 enhanced both resting and electrically-induced [3H]ACh release, while SOM inhibited the electrically-stimulated [3H]ACh release.  相似文献   

6.
Somatostatin (SOM) synthesis and release were studied with radioimmunoassay and immunocytochemical techniques in rat fetal hippocampal neurons maintained in monolayer tissue culture. SOM immunoreactivity increased from undetectable to over 4,000 pg/ml in media and over 2,500 pg/culture in neurons by 3 to 5 weeks. After 3 weeks, approximately 11% of the neurons stained for SOM. Gamma-aminobutyric (GABA) immunoreactivity was present in hippocampal neurons from 1 day to 5 weeks with 40-50% of the neurons staining for GABA by 5 weeks in vitro. Costaining neurons for SOM and GABA revealed that 63% which were positive for SOM also stained for GABA.  相似文献   

7.
We investigated the effect of peripherally administered caffeine (50 mg/kg), choline (30, 60, or 120 mg/kg) or combinations of both drugs on the spontaneous release of acetylcholine (ACh) from the corpus striatum of anesthetized rats using in vivo microdialysis. Caffeine alone or choline in the 30 or 60 mg/kg dose failed to increase ACh in microdialysis samples; the 120 mg/kg choline dose significantly enhanced ACh during the 80 min following drug administration. Coadministration of caffeine with choline significantly increased ACh release after each of the choline doses tested. Peak microdialysate levels with the 120 mg/kg dose were increased 112% when caffeine was additionally administered, as compared with 54% without caffeine. These results indicate that choline administration can enhance spontaneous ACh release from neurons, and that caffeine, a drug known to block adenosine receptors on these neurons, can amplify the choline effect.  相似文献   

8.
In the assay of glutamate and gamma-aminobutyric acid (GABA) with a high-performance liquid chromatography, spontaneous release of glutamate and GABA from rat hippocampal slices was significantly enhanced by mecamylamine, an inhibitor of non-alpha7 ACh receptors, or alpha-bungarotoxin, an inhibitor of alpha7 ACh receptors in the absence of tetrodotoxin (TTX), but not in the presence of TTX. Nicotine significantly enhanced glutamate and GABA release in the absence of TTX, that is abolished by mecamylamine or alpha-bungarotoxin, while it had no effect on the release in the presence of TTX. In the recording of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor-mediated excitatory postsynaptic currents (AMPA-EPSCs) and GABA(A) receptor-mediated inhibitory postsynaptic currents (GABA(A)-IPSCs) from CA1 pyramidal neurons of rat hippocampal slices, nicotine did not affect the rate and amplitude of AMPA-EPSCs and AMPA-miniature EPSCs. In contrast, nicotine significantly increased the rate of GABA(A)-IPSCs, without affecting the amplitude, but such effect was not obtained with GABA(A)-miniature IPSCs. The collective results suggest that alpha7 and non-alpha7 ACh receptors expressed in the hippocampus, activated under the basal conditions, inhibit release of glutamate and GABA controlled through multi-synaptic relays, but that otherwise, those receptors, highly activated by nicotine, stimulate both the release, with a part of GABA released from interneurons transmitting to CA1 pyramidal neurons. Furthermore, the results also suggest that alpha7 and non-alpha7 ACh receptors do not have potency sufficiently to modulate glutamate and GABA release controlled by single synapses.  相似文献   

9.
Modulation of acetylcholine (ACh) release from superfused hippocampal slices was examined when the release of ACh was stimulated by exposure of slices to elevated K+ concentration. Evoked release was not sensitive to inhibition by 0.1 microM tetrodotoxin, but it could be inhibited in a dose-dependent manner by a muscarinic agonist (10-100 nM oxotremorine) and a purinergic agonist (10-100 nM 2-chloroadenosine). The alpha-dendrotoxin (100 nM), which selectively blocks voltage-gated inactivating K+ channels in nerve endings, did not affect the release of ACh under resting or depolarized conditions. However, alpha-dendrotoxin reduced the 2-chloroadenosine-induced inhibition of release, but did not alter the oxotremorine-induced inhibition. These results suggest that an alpha-dendrotoxin-sensitive K+ channel may be activated as an obligatory step in the modulation of ACh release by presynaptic purinergic receptor activation, but not in the modulation by presynaptic muscarinic receptors.  相似文献   

10.
《Journal of Physiology》1998,92(3-4):309-316
The α7-nicotinic receptor (nAChR)-selective agonist choline and nAChR-subtype-selective antagonists led to the discovery that activation of both α7 and α4β2 nAChRs located in CA1 interneurons in slices taken from the rat hippocampus facilitates the tetrodotoxin (TTX)-sensitive release of γ-aminobutyric acid (GABA). Experiments carried out in cultured hippocampal neurons not only confirmed that preterminal α7 and α4β2 nAChRs modulate the TTX-sensitive release of GABA, but also demonstrated that evoked release of GABA is reduced by rapid exposure of the neurons to acetylcholine (ACh, 10 μM-1 mM) in the presence of the muscarinic receptor antagonist atropine (1 μM). This effect of ACh, which is fully reversible and concentration-dependent, is partially blocked by superfusion of the cultured neurons with external solution containing either the α7-nAChR-selective antagonist methyllycaconitine (MLA, 1 nM) or the α4β2-nAChR-selective antagonist dihydro-β-erythroidine (DHβE, 100 nM). A complete blockade of ACh-induced reduction of evoked release of GABA was achieved only when the neurons were perfused with external solution containing both MLA and DHβE, suggesting that activation of both α7 and α4β2 nAChRs modulates the evoked release of GABA from hippocampal neurons. Such mechanisms may account for the apparent involvement of nAChRs in the psychological effects of tobacco smoking, in brain disorders (e.g., schizophrenia and epilepsy), and in physiological processes, including cognition and nociception.  相似文献   

11.
Acetylcholine receptor (AChR) development was examined in neurons freshly isolated from chick ciliary ganglia. Between Embryonic Day 8 (E8) and 16, both the ACh response per unit membrane and the density of surface AChRs increased, while the apparent affinity for ACh decreased. AChRs had single-channel conductances of 25 and 40 pS. The distribution of single-channel events shifted during development; at E8 events of both conductances were equally rare, while by E14 there were many events and most were 40 pS. The open durations of 25 and 40 pS events had two mean values. The open lifetimes of the 25 pS events did not change between E8 and E14, while the lifetimes of the 40 pS events increased, and by E14 most were long. The ACh response of the neurons also became sensitive to regulation by a cAMP-dependent mechanism at about E10. The observed changes may reflect developmental control over processing required for receptor regulation and differential expression of AChR subtypes.  相似文献   

12.
We have studied the effects of 25 mM potassium, electrical stimulation of the phrenic nerve, and crude black widow spider venom on the ultrastructure, electrophysiology, and acetylcholine (ACh) contents of mouse diaphragms. About 65% of the ACh in diaphragms is contained in a depletable store in the nerve terminals. The rest of the ACh is contained in a nondepletable store that may correspond to the store that remains in denervated muscles and includes, in addition, ACh in the intramuscular branches of the phrenic nerve. About 4% of the ACh released from the depletable store at rest is secreted as quanta and may come from the vesicles, while 96% is secreted in a nonquantized form and comes from an extravesicular pool. The size of the extravesicular pool is uncertain: it could be less than 10%, or as great as 50%, of the depletable store. K causes a highly (but perhaps not perfectly) selective increase in the rate of quantal secretion so that quanta account for about 50% of the total ACh released from K- treated diaphragms. K, or electrical stimulation of the phrenic nerve, depletes both the vesicular and extravesicular pools of ACh when hemicholinium no. 3 (HC-3) is present. However, most of the vesicles are retained under these conditions so that the diaphragms are able to increase slightly their rates of release of ACh when K is added. Venom depletes the terminals of their vesicles and abolishes the release of quanta of ACh. It depletes the vesicular pool of ACh (since it depletes the vesicles), but may only partially deplete the extravesicular pool (since it reduces resting release only 10--40%). The rate of release of ACh from the residual extravesicular pool does not increase when 25 mM K is added. Although we cannot exclude the possibility that stimulation may double the rate of release of ACh from the extravesicular pool, our results are compatible with the idea that the ACh released by stimulation comes mainly from the vesicles and that, when synthesis is inhibited by HC-3, ACh may be exchanged between the extravesicular pool and recycled vesicles.  相似文献   

13.
Abstract— Acetylcholine (ACh) release from sliced cerebral cortex of rats was measured when the tissue was incubated in a high K+ (46 m m ) medium containing eserine. In the absence of hemicholinium (HC-3), ACh release was well maintained, but in the presence of HC-3, ACh release declined within 15–20 min. Subcellular fractions representing nerve-ending free (cytoplasmic) ACh and nerve-ending bound ACh were prepared from slices that had been stimulated to release ACh in the presence of HC-3. Both nerve-ending stores of ACh were depleted when their content was compared to tissue that had not been stimulated and there was no demonstrable difference in the rate of depletion of either of the two fractions. Stimulating slices with K+ in the absence of HC-3 also depleted cytoplasmic and vesicle-bound ACh. It is concluded that, under these experimental conditions, both nerve ending stores of ACh are available for release and that, in the absence of HC-3, ACh synthesis can maintain ACh release, but cannot maintain tissue ACh content.  相似文献   

14.
The effect of nerve growth factor (NGF) on the development of cholinergic sympathetic neurons was studied in cultures grown either on monolayers of dissociated rat heart cells or in medium conditioned by them. In the presence of rat heart cells the absolute requirement of neurons for exogenous NGF was partially spared. The ability of heart cells to support neuronal survival was due at least in part to production of a diffusable NGF-like substance into the medium. Although some neurons survived on the heart cell monolayer without added NGF, increased levels of exogenous NGF increased neuronal survival until saturation was achieved at 0.5 microgram/ml 7S NGF. The ability of neurons to produce acetylcholine (ACh) from choline was also dependent on the level of exogenous NGF. In mixed neuron-heart cell cultures, NGF increased both ACh and catecholamine (CA) production per neuron to the same extent; saturation occurred at 1 microgram/ml 7S NGF. As cholinergic neurons developed in culture, they became less dependent on NGF for survival and ACh production, but even in older cultures approximately 40% of the neurons died when NGF was withdrawn. Thus, NGF is as necessary for survival, growth, and differentiation of sympathetic neurons when the neurons express cholinergic functions as when the neurons express adrenergic functions (4, 5).  相似文献   

15.
To identify the target cells of GABAergic neurons located in the myenteric plexus, the action of γ-aminobutyric acid (GABA) on the release of acetylcholine (ACh) and on the contractions was studied using the isolated guinea pig ileum. GABA evoked a release of 3H-ACh from the contracting ileum, under conditions of loading with 3H-choline. As both the GABA-evoked release of 3H-ACh and the contractions were inhibited by bicuculline, tetrodotoxin and furosemide, but not by hexamethonium, this release seems to be evoked through GABA receptors which are bicuculline sensitive and associated with the Cl- ion channel.  相似文献   

16.
The effect of 2-(4-phenylpiperidino)cyclohexanol (AH5183 or vesamicol), a compound known to block the uptake of acetylcholine (ACh) into cholinergic synaptic vesicles, on the release of endogenous and [14C]ACh from slices of rat striatum was investigated. ACh release was evoked either by electrical stimulation or by veratridine. The effect of electrical stimulation was entirely dependent on external Ca2+. By contrast, veratridine (40 microM) also enhanced ACh release in the absence of Ca2+. Indeed, with veratridine two components were clearly distinguished: one dependent on external Ca2+ and the other not. Vesamicol inhibited [14C]ACh release evoked by both veratridine and electrical stimulation in the presence of external Ca2+, provided it was added to the tissue prior to loading with [14C]choline. With the same treatment vesamicol only slightly affected the release of endogenous ACh. Under the same conditions the Ca2(+)-independent [14C]ACh release evoked by veratridine was not prevented by vesamicol. The differential responsiveness to vesamicol suggests that ACh pools involved in Ca2+o-dependent ACh release are different from those mobilized during Ca2+o-independent ACh release.  相似文献   

17.
We investigated the effect of acetylcholine (ACh) on the activation of adenylate cyclase by dopamine (DA) in a lysed synaptosomal preparation from rat striatum. ACh reduced both basal and the DA-activated adenylate cyclase with an apparent IC50 of approximately 1 microM. From a kinetic analysis it appeared that ACh reduced the Vmax for activation by DA but not the activation constant for DA. For most preparations the Vmax was reduced by 30-40%. The presence of atropine did not affect the activation of the enzyme by DA but it blocked the inhibition by ACh. Following 6-hydroxydopamine lesion of the nigrostriatal pathway, the enzyme became supersensitive to activation by DA and also more sensitive to inhibition by ACh. Inhibition of adenylate cyclase by ACh appeared to be rather specific for activation by DA, as ACh had no effect on activation of adenylate cyclase by the adenosine analogue N6-(L-2-phenylisopropyl)adenosine. These results indicate that some striatal muscarinic and dopaminergic receptors are probably coupled to the same adenylate cyclase domain. Moreover, they suggest a biochemical model for the dynamic balance of cholinergic and dopaminergic neurons that innervate the striatum.  相似文献   

18.
19.
The present experiments show that somatostatin (SS)-like immunoreactive material is present in the hippocampus and that its release can be increased by K+ stimulation of rat hippocampal slices, suggesting that SS-like peptides may be of significance to neurotransmission in the hippocampus. Exogenous SS-28 and SS-14 enhanced the K(+)-evoked release of endogenous acetylcholine (ACh) from rat hippocampal slices, whereas amino-terminal fragments of SS-28 did not. The increased ACh release in the presence of either peptide appeared to be mediated by an interaction with SS receptors because cyclo-SS, a putative SS antagonist, abolished the effects of both SS-28 and SS-14. In addition, the increase in ACh release induced by SS-14 or SS-28 was antagonized by the calcium channel antagonists omega-conotoxin GVIA, nifedipine, and cinnarizine, implicating voltage-sensitive calcium channels in this effect. Moreover, the effect was sensitive to tetrodotoxin, suggesting an indirect action of the peptides at a site distal to cholinergic nerve terminals. Cysteamine, which has been reported to deplete SS content and to increase SS release in brain, augmented the basal and evoked release of ACh from hippocampal slices, without affecting SS-like content and release. Finally, neuropeptide Y, which is colocalized with SS in many neurons of the hippocampal formation, did not alter ACh release, nor did it facilitate the SS-induced increase. The results suggest that in the rat hippocampus, both SS-28 and SS-14 interact with SS receptors to regulate ACh release indirectly by a mechanism that involves alterations of calcium influx during depolarization.  相似文献   

20.
Acetylcholine (ACh) responses were elicited by ionophoresis from neurons, located in the medial pontine reticular formation, which were antidromically identified as having axons projecting in the reticulospinal tracts. Most neurons were silent at rest and could be caused to discharge at a regular, slow rate by a constant application of glutamate. ACh altered this slow rate of firing in 28 of 29 cells but showed three different patterns of effect: approximately one-third were excited, one-third were inhibited, and one-third showed biphasic inhibition-excitation. The ACh responses were not sensitive to atropine. These observations suggest that reticulospinal neurons have ACh receptors mediating both inhibition and excitation, perhaps located on different portions of the same neuron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号