首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Addendum to: Diarra D, Stolina M, Polzer K, Zwerina J, Ominsky MS, Dwyer D, Korb A, Smolen J, Hoffmann M, Scheinecker C, van der Heijde D, Landewe R, Lacey D, Richards WG and Schett G. Dickkopf-1 Is a Master Regulator of Joint Remodeling. Nat Med. 2007; 13:156-63. Remodeling of joints is a key feature of inflammatory and degenerative joint disease. Bone erosion, cartilage degeneration and growth of bony spurs termed osteophytes are key features of structural joint pathology in the course of arthritis, which lead to impairment of joint function. Understanding their molecular mechanisms is essential to tailor targeted therapeutic approaches to protect joint architecture from inflammatory and mechanical stress. This addendum summarizes the new insights in the molecular regulation of bone formation in the joint and its relation to bone resorption. It describes how inflammatory cytokines impair bone formation and block the repair response of joints towards inflammatory stimuli. It particularly points out the key role of Dickkopf-1 protein, a regulator of the Wingless signaling and inhibitor of bone formation. This new link between inflammation and bone formation is also crucial for explaining the generation of osteophytes, bony spurs along joints, which are characterized by new bone and cartilage formation. This mechanism is largely dependent on an activation of wingless protein signaling and can lead to complete joint fusion. This addendum summarized the current concepts of joint remodeling in the limelight of these new findings.  相似文献   

2.
Remodeling of joints is a key feature of inflammatory and degenerative joint disease. Bone erosion, cartilage degeneration and growth of bony spurs termed osteophytes are key features of structural joint pathology in the course of arthritis, which lead to impairment of joint function. Understanding their molecular mechanisms is essential to tailor targeted therapeutic approaches to protect joint architecture from inflammatory and mechanical stress. This addendum summarizes the new insights in the molecular regulation of bone formation in the joint and its relation to bone resorption. It describes how inflammatory cytokines impair bone formation and block the repair response of joints towards inflammatory stimuli. It particularly points out the key role of Dickkopf-1 protein, a regulator of the Wingless signaling and inhibitor of bone formation. This new link between inflammation and bone formation is also crucial for explaining the generation of osteophytes, bony spurs along joints, which are characterized by new bone and cartilage formation. This mechanism is largely dependent on an activation of wingless protein signaling and can lead to complete joint fusion. This addendum summarized the current concepts of joint remodeling in the limelight of these new findings.Key words: joint remodeling, arthritis, bone formation, bone erosion, osteoblasts, osteoclasts, Dickkopf, wingless proteinsJoints face profound remodeling in the course of arthritis. In humans, pathologic joint remodeling manifests as (i) destruction of joints due to bone erosion (rheumatoid arthritis), (ii) fusion of joints due to formation of bony spurs such as osteophytes, spondylophytes and syndesmophytes (ankylosing spondylitis) or (iii) a mixture of both changes (psoriatic arthritis). The molecular mechanisms determining these different forms of joint remodeling are not fully clarified, Insights in these mechanisms however are a clue to a deeper understanding of the architectural changes of human joints.Similar to systemic bone turnover, which most is most prominent in the trabecular bone compartment of the spine and long bones, joints are hot spots of bone remodeling during inflammatory disease. Cytokines expressed by inflammatory cells in the synovial membrane regulate local bone homeostasis and enable to remodel joints during disease—a process which can either lead to crippling and functional loss or to fusion and stabilization of the affected joint. Rheumatoid arthritis is characterized by bone erosions, which are the result of an enhanced bone resorption. In rheumatoid arthritis osteoclasts, the primary bone resorbing cells, accumulate and degrade the periarticular bone as well as the mineralized cartilage.1 Molecularly increased osteoclast formation is based on the expression of macrophage colony-stimulating factor (MCSF) and receptor-antagonist of NFκB ligand (RANKL) in the synovial tissue, which both drive the differentiation of osteoclasts from monocytic precursors.24 Osteoclasts are specialized cells to resorb bone and their local accumulation in the joint leads to a catabolic state, which by far outweighs bone formation resulting in a negative net effect of bone remodeling. Inflammatory cytokines, such as TNF, IL-1, IL-6 and IL-17 induce osteoclast formation by enhancing the expression of RANKL and promoting differentiation of osteoclast precursor cells to mature osteoclasts.58 Abundance of proinflammatory cytokines in the synovial membrane of patients with RA, their induction of molecules involved in osteoclast formation and the influx of monocytes/macrophages serving as osteoclast precursor cells represent ideal prerequisites for osteoclast formation in joints.9The fact that appropriate repair strategies are virtually absent in patients with RA and that bone is hardly rebuilt when bone erosions have emerged, suggests activation of molecular signals, which blunt bone formation. Bone formation itself is regulated by growth factors and hormones, which stimulate differentiation and activity of osteoblasts. Typical regulators of bone formation constitute parathyroid hormone, prostaglandins, bone morphogenic proteins (BMPs) and wingless proteins (Wnt). Particularly the role of Wnt proteins in bone formation have achieved growing interest during the past few years, leading to identification of the LRP5/6 receptor as a key molecule for anabolic skeletal responses. Wnt proteins bind to the LRP5/6 receptor and lead to activation of a signal pathway involving GSK3 and β-catenin, which drive differentiation of mesenchymal cells into osteoblastogenesis.10 Regulators of Wnt- induced bone formation are Dickkopf (DKK) proteins, which competitively bind to LRP5/6 and prevent signaling activation by additionally engaging a negative coreceptor termed Kremen-1.11,12 DKK proteins thus regulate bone homeostasis by interference with Wnt signaling.13We recently showed that inflammatory cytokines such as TNF induce DKK-1, a member of the DKK- family, which inhibits Wnt signaling. DKK-1 is highly expressed in inflammatory lesions of experimental arthritis and human rheumatoid arthritis.14 Moreover, increased levels can be detected in the serum of patients with RA, which depend on TNF. This is supported by the normalization of elevated DKK-1 levels in RA patients upon initiation of systemic TNF- blockade. Inhibition of DKK-1 in mice completely abolishes bone erosions in different models of experimental arthritis and leads to increased bone growth, which manifests as osteophyte formation in the joint.DKK-1 links the inflammation with bone formation as RANKL links inflammation with bone resorption. The fact that TNF and presumably also other inflammatory mediators induce both proteins explains the profound negative effect of inflammation on bone. Inflammation uncouples the balance between bone resorption and formation, enhancing the former by inducing RANKL and by repressing the latter by DKK-1. Also appears to be a tight cross talk between the Wnt- and RANKL-pathways.15 Inhibition of DKK-1 in arthritic mice lead to protection from bone erosions and osteoclasts did not appropriately form. This effect is based on the induction of osteoprotegerin (OPG) a natural decoy receptor for RANKL, which blocks RANKL and thus osteoclast formation. OPG is induced by Wnt proteins and shifts the balance from bone resorption to bone formation.In contrast to rheumatoid arthritis joints in ankylosing spondylitis and also in degenerative joint disease (osteoarthritis) show an attempt towards joint fusion rather than joint destruction. These bony spurs are the result of endochondral bone formation starting from the periosteum close to the joints, where osteoblasts differentiate build up bone matrix. We could demonstrate that Wnt proteins are crucially involved in this process since inhibition of DKK-1 lead to emergence of osteophytes and even complete fusion of joints. Taken together these data suggest that the balance of the Wnt/DKK system determines the remodeling of joints by governing bone destruction as well as osteophyte formation in joints (Fig. 1).Open in a separate windowFigure 1Patterns of joint remodeling.  相似文献   

3.

Introduction

Arthritic bone loss in the joints of patients with rheumatoid arthritis is the result of a combination of osteoclastic bone resorption and osteoblastic bone formation. This process is not completely understood, and especially the importance of local inflammation needs further investigation. We evaluated how bone formation and bone resorption are altered in experimental autoimmune arthritis.

Methods

Twenty-one female SKG mice were randomized to either an arthritis group or a control group. Tetracycline was used to identify mineralizing surfaces. After six weeks the right hind paws were embedded undecalcified in methylmethacrylate. The paws were cut exhaustively according to the principles of vertical sectioning and systematic sampling. 3D design-based methods were used to estimate the total number of osteoclasts, mineralizing surfaces, eroded surfaces, and osteoclast-covered bone surfaces. In addition the presence of adjacent inflammation was ascertained.

Results

The total number of osteoclasts, mineralizing surfaces, eroded surfaces, and osteoclast covered surfaces were elevated in arthritic paws compared to normal paws. Mineralizing surfaces were elevated adjacent to as well as not adjacent to inflammation in arthritic mice compared to normal mice. In arthritic mice, eroded surfaces and osteoclast covered surfaces were larger on bone surfaces adjacent to inflammation than on bone surfaces without adjacent inflammation. However, we found no difference between mineralizing surfaces at bone surfaces with or without inflammation in arthritic mice.

Conclusions

Inflammation induced an increase in resorptive bone surfaces as well as formative bone surfaces. The bone formative response may be more general, since formative bone surfaces were also increased when not associated with inflammation. Thus, the bone loss may be the result of a substantial local bone resorption, which cannot be compensated by the increased local bone formation. These findings may be valuable for the development of new osteoblast targeting drugs in RA.  相似文献   

4.
Endochondral ossification in the growth cartilage of long bones from the bullfrog Rana catesbeiana was examined. In stage-46 tadpoles and 1-year-old animals, the hypertrophic cartilage had a smooth contact with the bone marrow and the matrix showed no calcification or endochondral bone formation. In spite of showing no aspects of calcification, the chondrocytes exhibited alkaline phosphatase activity and some of them died by apoptosis. However, matrix calcification and endochondral ossification were observed in 2-year-old bullfrogs. Calcium deposits appeared as isolated or coalesced spherical structures in the extracellular matrix of hypertrophic cartilage. Bone trabeculae were restricted to the central area at the sites where the hypertrophic cartilage surface was exposed to the bone marrow. Cartilage matrix calcification and the formation of bone trabeculae were not dependent on each other. Osteoclasts were involved in calcified matrix resorption. These results demonstrate that the calcification of hypertrophic cartilage and the deposition of bone trabeculae are late events in R. catesbeiana and do not contribute to the development and growth of long bones in adults. These processes may play a role in reinforcing bony structures as the bullfrog gains weight in adulthood. In addition, the deposition of bone trabeculae is not dependent on cartilage matrix calcification.  相似文献   

5.
Honda K  Natsumi Y  Urade M 《Gerodontology》2008,25(4):251-257
Objectives: The relationship of bony changes in the condylar surfaces in articular disc displacement without reduction in temporomandibular joint (TMJ) was investigated using diagnostic imaging. The study also evaluated whether the bony changes in the condylar surfaces limit disc and condyle motion, and produce pathological joint sounds. Materials and methods: Thirty‐seven joints in 28 patients diagnosed with degenerative bony changes in the condylar surfaces radiographically and anterior disc displacement without reduction using magnetic resonance imaging (MRI) were studied. The bony changes were assessed by radiographic examination and classified into two types: pathological bone changes (PBCs) including erosion, osteophyte formation and deformity, and adaptive bone changes (ABCs) including flattening and concavity. MRI was performed on the TMJ to examine the configuration and position of the discs. Joint sounds in the TMJ were determined using electrovibratograghy with a joint vibration analysis. Results: The articular disc motion to the condyle in the PBC group was smaller than in the ABC group irrespective of the configuration of the disc, even though there were no significant differences between the two types of bony changes in the disc position during jaw closing. The joint vibration analysis of the TMJ showed that joint sounds with a higher frequency were observed in the PBC group than in the ABC group. High energy levels needed to produce the higher frequencies (over 300 Hz) were observed only in the PBC group.  相似文献   

6.
Dickkopf-1 is a master regulator of joint remodeling   总被引:1,自引:0,他引:1  
Degenerative and inflammatory joint diseases lead to a destruction of the joint architecture. Whereas degenerative osteoarthritis results in the formation of new bone, rheumatoid arthritis leads to bone resorption. The molecular basis of these different patterns of joint disease is unknown. By inhibiting Dickkopf-1 (DKK-1), a regulatory molecule of the Wnt pathway, we were able to reverse the bone-destructive pattern of a mouse model of rheumatoid arthritis to the bone-forming pattern of osteoarthritis. In this way, no overall bone erosion resulted, although bony nodules, so-called osteophytes, did form. We identified tumor necrosis factor-alpha (TNF) as a key inducer of DKK-1 in the mouse inflammatory arthritis model and in human rheumatoid arthritis. These results suggest that the Wnt pathway is a key regulator of joint remodeling.  相似文献   

7.
Bone resorption and bone remodelling in juvenile carp, Cyprinus carpio L.   总被引:1,自引:0,他引:1  
The present study considers the important role of bone resorption for bone growth in general, and aims to clarify if and how bone resorption contributes to the skeletal development of carp, Cyprinus carpio L., a teleost species with ‘normal’ osteocyte‐containing (cellular) bone. To ensure the identification of osteoclasts and sites of bone resorption independently from the morphology of the bony cells, bones were studied by histological procedures, and by demonstration of the enzymes which serve as osteoclast markers, viz. tartrate resistant acid phosphatase (TRAP), ATPase and a vacuolar proton pump. Two types of bone‐resorbing cells were observed in juvenile carp: (1) multinucleated giant cells displaying morphological and biochemical attributes which are known from mammalian osteoclasts; and (b) flat cells which lack a visible ruffled border and for which identification requires the performance of enzyme histochemical procedures. Bone resorption performed by osteoclasts mainly occurs at endosteal bone surfaces. To a lesser extent, bone resorption also takes place at periosteal bone surfaces, but without an apparent connection to bone growth. The latter observation, and the occurrence of bone remodelling, suggest that the endoskeleton of juvenile carp might be involved in mineral metabolism. Morphological differences and biochemical similarities to bone resorption in teleosts with acellular bone are discussed.  相似文献   

8.
The determination of area and shape of articular surfaces on the limb bones of extinct archosaurs is difficult because of postmortem decomposition of the fibrous tissue and articular cartilages that provide the complex three‐dimensional joint surfaces in vivo. This study aims at describing the shape of the articular cartilages in the elbow joints of six crocodilian specimens; comparing its structure with that of four birds, three testudines, and five squamates; and comparing the shapes of the surfaces of the calcified and the articular cartilages in the elbow joints of an Alligator specimen. The shapes of the articular cartilages of crocodilian elbow joint are shown to resemble those of birds. The humerus possesses an olecranon fossa positioned approximately at the midportion of the distal epiphysis and bordering the margin of the extensor side of the articular surface. The ulna possesses a prominent intercotylar process at approximately the middle of its articular surface, and splits the surface into the radial and ulnar cotylae. This divides the articular cartilage into an articular surface on the flexor portion, and the olecranon on the extensor portion. The intercotylar process fits into the olecranon fossa to restrict elbow joint extension. Dinosaurs and pterosaurs, phylogenetically bracketed by Crocodylia and Aves (birds), may have possessed a similar olecranon fossa and intercotylar process on their articular cartilages. Although these shapes are rarely recognizable on the bones, their impressions on the surfaces of the calcified cartilages provide an important indication of the extensor margin of the articular surfaces. This, in turn, helps to determine the maximum angle of extension of the elbow joint in archosaurs. J. Morphol., 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
The presence of intermuscular bones in fisheries products limits the consumption and commercialization potential of many fish species, including tambaqui (Colossoma macropomum). These bones have caused medical emergencies and are an undesirable characteristic for fish farming because their removal is labor-intensive during fish processing. Despite the difficulty in identifying genes related to the lack of intermuscular bone in diverse species of fish, the discovery of individuals lacking intermuscular bones in a Neotropical freshwater characiform fish has provided a unique opportunity to delve into the genetic mechanisms underlying the pathways of intermuscular bone formation. In this study, we carried out a GWAS among boneless and wt tambaqui populations to identify markers associated with a lack of intermuscular bone. After analyzing 11 416 SNPs in 360 individuals (12 boneless and 348 bony), we report 675 significant (Padj < 0.003) associations for this trait. Of those, 13 associations were located near candidate genes related to the reduction of bone mass, promotion of bone formation, inhibition of bone resorption, central control of bone remodeling, bone mineralization and other related functions. To the best of our knowledge, for the first time, we have successfully identified genes related to a lack of intermuscular bones using GWAS in a non-model species.  相似文献   

10.
Rat adjuvant arthritis (AA) is an animal model of rheumatoid arthritis in which pannus formation and destruction of joints occur after immunization with complete Freund's adjuvant. Neovascularization is present within the synovium and may be critical for pannus growth. In this study the effects of a novel angiogenesis inhibitor, AGM-1470, on AA were evaluated. Lewis rats were immunized with CFA to induce arthritis. AGM-1470 treatment was initiated prior to arthritis onset (preventative protocol) or administered to rats with established disease (suppressive protocol). The severity of synovitis and the immunologic status of all rats were then evaluated. Using clinical and radiographic criteria, AGM-1470 significantly reduced arthritis incidence (preventative protocol) (P < 0.01) and disease severity (both protocols, P < 0.001, compared to controls) without affecting T cell function in vitro or phenotype in vivo. Additionally, histologic sections from control rats revealed marked pannus formation, destruction of bone/cartilage, and neovascularization. These findings were absent in AGM-1470-treated rats. AGM-1470 may offer a new treatment option for rheumatoid arthritis and other angiogenesis-dependent diseases.  相似文献   

11.
Abstract

We investigated the presence and alteration of lymphatic vessels in joints of arthritic mice using a whole-slide imaging system. Joints and long bone sections were cut from paraffin blocks of two mouse models of arthritis: meniscal-ligamentous injury (MLI)-induced osteoarthritis (OA) and TNF transgene (TNF-Tg)-induced rheumatoid arthritis (RA). MLI-OA mice were fed a high fat diet to accelerate OA development. TNF-Tg mice were treated with lymphatic growth factor VEGF-C virus to stimulate lymphangiogenesis. Sections were double immunofluorescence stained with anti-podoplanin and alpha-smooth muscle actin antibodies. The area and number of lymphatic capillaries and mature lymphatic vessels were determined using a whole-slide imaging system and its associated software. Lymphatic vessels in joints were distributed in soft tissues mainly around the joint capsule, ligaments, fat pads and muscles. In long bones, enriched lymphatic vessels were present in the periosteal areas adjacent to the blood vessels. Occasionally, lymphatic vessels were observed in the cortical bone. Increased lymphatic capillaries, but decreased mature lymphatic vessels, were detected in both OA and RA joints. VEGF-C treatment increased lymphatic capillary and mature vessel formation in RA joints. Our findings suggest that the lymphatic system may play an important role in arthritis pathogenesis and treatment.  相似文献   

12.
TSG-6 is an inflammation-induced protein that is produced at pathological sites, including arthritic joints. In animal models of arthritis, TSG-6 protects against joint damage; this has been attributed to its inhibitory effects on neutrophil migration and plasmin activity. Here we investigated whether TSG-6 can directly influence bone erosion. Our data reveal that TSG-6 inhibits RANKL-induced osteoclast differentiation/activation from human and murine precursor cells, where elevated dentine erosion by osteoclasts derived from TSG-6(-/-) mice is consistent with the very severe arthritis seen in these animals. However, the long bones from unchallenged TSG-6(-/-) mice were found to have higher trabecular mass than controls, suggesting that in the absence of inflammation TSG-6 has a role in bone homeostasis; we have detected expression of the TSG-6 protein in the bone marrow of unchallenged wild type mice. Furthermore, we have observed that TSG-6 can inhibit bone morphogenetic protein-2 (BMP-2)-mediated osteoblast differentiation. Interaction analysis revealed that TSG-6 binds directly to RANKL and to BMP-2 (as well as other osteogenic BMPs but not BMP-3) via composite surfaces involving its Link and CUB modules. Consistent with this, the full-length protein is required for maximal inhibition of osteoblast differentiation and osteoclast activation, although the isolated Link module retains significant activity in the latter case. We hypothesize that TSG-6 has dual roles in bone remodeling; one protective, where it inhibits RANKL-induced bone erosion in inflammatory diseases such as arthritis, and the other homeostatic, where its interactions with BMP-2 and RANKL help to balance mineralization by osteoblasts and bone resorption by osteoclasts.  相似文献   

13.
Summary Ultrastructural observations on macrophage-mediated resorption of calcified tissue of killed fetal long bones are described and correlated with increased 45Ca release into the medium. Macrophages disrupt calcified tissue extracellularly and appear to engulf large fragments of mineralized matrix. Ruffled borders, which are common features of osteoclasts at sites of resorption of bone, do not develop in macrophages. However, clear zones are seen in macrophages as well as osteoclasts. These findings provide additional evidence for non-osteoclast-mediated resorption of calcified tissue.This study was supported by Grant DE-04443 from USPHS  相似文献   

14.
Periodontitis has been associated with rheumatoid arthritis. In experimental arthritis, concomitant periodontitis caused by oral infection with Porphyromonas gingivalis enhances articular bone loss. The aim of this study was to investigate how lipopolysaccharide (LPS) from P. gingivalis stimulates bone resorption. The effects by LPS P. gingivalis and four other TLR2 ligands on bone resorption, osteoclast formation, and gene expression in wild type and Tlr2-deficient mice were assessed in ex vivo cultures of mouse parietal bones and in an in vivo model in which TLR2 agonists were injected subcutaneously over the skull bones. LPS P. gingivalis stimulated mineral release and matrix degradation in the parietal bone organ cultures by increasing differentiation and formation of mature osteoclasts, a response dependent on increased RANKL (receptor activator of NF-κB ligand). LPS P. gingivalis stimulated RANKL in parietal osteoblasts dependent on the presence of TLR2 and through a MyD88 and NF-κB-mediated mechanism. Similarly, the TLR2 agonists HKLM, FSL1, Pam2, and Pam3 stimulated RANKL in osteoblasts and parietal bone resorption. LPS P. gingivalis and Pam2 robustly enhanced osteoclast formation in periosteal/endosteal cell cultures by increasing RANKL. LPS P. gingivalis and Pam2 also up-regulated RANKL and osteoclastic genes in vivo, resulting in an increased number of periosteal osteoclasts and immense bone loss in wild type mice but not in Tlr2-deficient mice. These data demonstrate that LPS P. gingivalis stimulates periosteal osteoclast formation and bone resorption by stimulating RANKL in osteoblasts via TLR2. This effect might be important for periodontal bone loss and for the enhanced bone loss seen in rheumatoid arthritis patients with concomitant periodontal disease.  相似文献   

15.
Chronic arthritis typically leads to loss of periarticular bone, which results from an imbalance between bone formation and bone resorption. Recent research has focused on the role of osteoclastogenesis and bone resorption in arthritis. Bone resorption cannot be observed isolated, however, since it is closely linked to bone formation and altered bone formation may also affect inflammatory bone loss. To simultaneously assess bone resorption and bone formation in inflammatory arthritis, we developed a histological technique that allows visualization of osteoblast function by in-situ hybridization for osteocalcin and osteoclast function by histochemistry for tartrate-resistant acid phosphatase. Paw sections from human tumor necrosis factor transgenic mice, which develop an erosive arthritis, were analyzed at three different skeletal sites: subchondral bone erosions, adjacent cortical bone channels, and endosteal regions distant from bone erosions. In subchondral bone erosions, osteoclasts were far more common than osteoblasts. In contrast, cortical bone channels underneath subchondral bone erosions showed an accumulation of osteoclasts but also of functional osteoblasts resembling a status of high bone turnover. In contrast, more distant skeletal sites showed only very low bone turnover with few scattered osteoclasts and osteoblasts. Within subchondral bone erosions, osteoclasts populated the subchondral as well as the inner wall, whereas osteoblasts were almost exclusively found along the cortical surface. Blockade of tumor necrosis factor reversed the negative balance of bone turnover, leading to a reduction of osteoclast numbers and enhanced osteoblast numbers, whereas the blockade of osteoclastogenesis by osteoprotegerin also abrogated the osteoblastic response. These data indicate that bone resorption dominates at skeletal sites close to synovial inflammatory tissue, whereas bone formation is induced at more distant sites attempting to counter-regulate bone resorption.  相似文献   

16.

Histological study of the skeleton of Claudiosaurus germaini reveals extensive pachyostosis. This feature results from the filling of intra‐osseous cavities by centripetal, endosteal deposits and occurs in conjunction with an intense remodelling of the bones by resorption and re‐deposition. Epiphyseal calcified cartilages are rapidly and entirely resorbed. Extensive pachyostosis suggests that Claudiosaurus was an aquatic reptile. However, the pachyostotic condition in this genus appears histogenetically quite different from the common type of pachyostosis observed in other aquatic tetrapods. Hence, it probably had a distinct physiological significance.  相似文献   

17.
胶原诱导型关节炎大鼠的关节影像学特点   总被引:2,自引:0,他引:2  
目的旨在分析CIA X线片四肢关节的破坏特点,揭示CIA大鼠关节破坏的规律,为规范评分方案提供依据。方法采用П型胶原和弗氏完全佐剂皮下注射清洁级Wistar大鼠,造模成功(每批10只,共3次)后第35天行全身X线钼靶照片,以正常组作为对照、每只大鼠评价96块骨破坏(erosion)和100个关节间隙(joint space narrowing,JSN);处死动物,取左前肢和右后肢近端第3足趾关节苏木素-伊红(HE)染色,评价中性粒细胞、淋巴细胞、浆细胞浸润、滑膜增生和软骨破坏的情况。结果造模成功后CIA大鼠关节出现明显的红肿,活动受限;HE病理显示,CIA关节存在明显的中性粒细胞、淋巴细胞和浆细胞浸润,滑膜增生,纤维组织增生,软骨破坏;X线片分析结果显示:①广泛性骨质疏松,边缘性骨质侵蚀,关节间隙狭窄或增宽,部分踝关节间隙消失,关节相互融合甚至骨性强直。②67%的骨出现erosion,JSN影响为78%,关节破坏以中、重度为主;③远端、近端趾间关节和踝关节发病率高,损害严重,掌趾关节发病率低,破坏较轻。④后肢关节破坏重于前肢(P〈0.01),左右肢没有显著性差异(P〉0.05)。结论①滑膜是CIA炎症反应启动的主要病灶,与骨交界的滑膜和血管翳造成了CIA的骨质破坏;②CIA影像学表现关节破坏严重,以远端、近端趾间关节和踝关节为主,这些关节可作为评价破坏程度的选择。本研究对于深入CIA关节破坏的病因病理和进一步规范X线片评分方案具有一定意义。  相似文献   

18.
19.

Introduction

The aim of the present study was to assess the prevalence and characteristics of subclinical arthritis of carpal and metacarpophalangeal joints in patients with systemic sclerosis (SSc).

Methods

Low-field (0.2 T) magnetic resonance imaging (MRI) was performed in consecutive patients with SSc attending our center between January 2010 and March 2011. Results were assessed in a standardized manner using the Rheumatoid Arthritis Magnetic Resonance Imaging Score (RAMRIS) and standardized assessments of all hand joints. Patients with arthritis due to overlap syndromes were excluded.

Results

Of 38 inpatients and eight outpatients who were screened for inclusion, 30 patients participated in the study and 26 patients could be evaluated. Erosions, bone marrow edema, synovitis, and joint effusions were found in 87%, 37%, 68%, and 58%, respectively, and 24% of patients had additional tenovaginitis. Arthritis affected only a low number of joints per analyzed hand. All bones and joints could be affected, but synovitis and bone marrow edema occurred predominantly in the proximal row of carpal bones, most frequently affecting the lunate bone. The extent of inflammatory changes measured with the RAMRIS correlated significantly with the functional status assessed with the validated German functional score questionnaire Funktionsfragebogen Hannover.

Conclusion

Low-grade arthritic changes on low-field MRI are frequent in patients with pure SSc. The features of arthritis in SSc differ from rheumatoid arthritis. The distribution, the MRI pattern and the predilection for the lunate bone raise the hypothesis that arthritis in SSc may be caused not only by immunological inflammation but also by ischemic mechanisms.  相似文献   

20.
Enlarged hock joints were observed during 1983 in B6C3F1 mice of chronic toxicity and carcinogenicity studies sponsored by the National Toxicology Program (NTP). Subsequently, approximately 9,500 B6C3F1 mice on 32 NTP chemical toxicity and carcinogenicity studies were evaluated for this condition by clinical examination. Group caged male B6C3F1 mice had thickening and reduced mobility of the hock joints at prevalences of 1.2% up to 6 months of age; 23% at 6 to 12 months of age; and 62% at 13 to 26 months of age. Group caged female B6C3F1 mice had a prevalence of 2% or less. Histologically, affected mice had periarticular exostoses on the bones of the hock joints, with formation of bony bridges around joints and deposition of new bone in joint spaces, resulting in partial or complete ankylosis. Individually caged male and female B6C3F1 mice were not affected. The cause of the ankylosis was not determined, but its occurrence in the NTP studies has been reduced by individual caging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号