首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
APC is often cited as a prime example of a tumor suppressor gene. Truncating germline and somatic mutations (or, infrequently, allelic loss) occur in tumors in FAP (familial adenomatous polyposis). Most sporadic colorectal cancers also have two APC mutations. Clues from attenuated polyposis, missense germline variants with mild disease and the somatic mutation cluster region (codons 1,250-1,450) indicate, however, that APC mutations might not result in simple loss of protein function. We have found that FAP patients with germline APC mutations within a small region (codons 1,194-1,392 at most) mainly show allelic loss in their colorectal adenomas, in contrast to other FAP patients, whose 'second hits' tend to occur by truncating mutations in the mutation cluster region. Our results indicate that different APC mutations provide cells with different selective advantages, with mutations close to codon 1,300 providing the greatest advantage. Allelic loss is selected strongly in cells with one mutation near codon 1,300. A different germline-somatic APC mutation association exists in FAP desmoids. APC is not, therefore, a classical tumor suppressor. Our findings also indicate a new mechanism for disease severity: if a broader spectrum of mutations is selected in tumors, the somatic mutation rate is effectively higher and more tumors grow.  相似文献   

2.
3.
Background

Familial adenomatous polyposis (known also as classical or severe FAP) is a rare autosomal dominant colorectal cancer predisposition syndrome, characterized by the presence of hundreds to thousands of adenomatous polyps in the colon and rectum from an early age. In the absence of prophylactic surgery, colorectal cancer (CRC) is the inevitable consequence of FAP. The vast majority of FAP is caused by germline mutations in the adenomatous polyposis coli (APC) tumor suppressor gene (5q21). To date, most of the germline mutations in classical FAP result in truncation of the APC protein and 60% are mainly located within exon 15.

Material and methods

In this first nationwide study, we investigated the clinical and genetic features of 52 unrelated Algerian FAP families. We screened by PCR-direct sequencing the entire exon 15 of APC gene in 50 families and two families have been analyzed by NGS using a cancer panel of 30 hereditary cancer genes.

Results

Among 52 FAP index cases, 36 had 100 or more than 100 polyps, 37 had strong family history of FAP, 5 developed desmoids tumors, 15 had extra colonic manifestations and 21 had colorectal cancer. We detected 13 distinct germline mutations in 17 FAP families. Interestingly, 4 novel APC germline pathogenic variants never described before have been identified in our study.

Conclusions

The accumulating knowledge about the prevalence and nature of APC variants in Algerian population will contribute in the near future to the implementation of genetic testing and counseling for FAP patients.

  相似文献   

4.
Inheritable colorectal cancers (CRC) accounted for about 20% of the CRC cases, such as hereditary nonpolyposis colorectal cancer (HNPCC), Gardner syndrome and familial adenomatous polyposis (FAP). A four-generation Han Chinese family was found affected with polyposis in colons. Inferred from the pedigree structure, the disease in this family showed an autosomal dominant inheritance model. To locate the causal mutations in this family, genomic DNAs were extracted and the next generation sequencing for 5 genes relating to colon cancer performed by Ion Torrent Personal Genome Machine with a 314 chip. The reads were aligned with human reference genome hg19 to call variants in the 5 genes. After analysis, 14 variants were detected in the sequenced sample and 13 been collected in dbSNP database and assigned with a rs identification number. In these variants, 9 were synonymous, 4 missense and 1 non-sense. In them, 2 rare variants (c.694C>T in APC and c.1690A>G in MSH2) might be the putative causal mutations for familial adenomatous polyposis (FAP) since the rarity of the mutated allele in normal controls. c.694C>T was detected in only affected members and generated a premature stop codon in APC. It should be a de novo germline mutation making APC containing this stop codon as targets for nonsense-mediated mRNA decay (NMD). c.1690A>G in MSH2 was not only detected in affected members, but also in normal ones in the family. Functional prediction revealed that the amino acid affected by this variant had no effect on the function of MSH2. Here, we report a de novo germline mutation of APC as the causal variant in a Chinese family with inheritable colon cancer by the next generation sequencing.  相似文献   

5.
Recent studies in mice have provided strong evidence for a modifier gene that is capable of effecting the expression of the mouse equivalent of familial adenomatous polyposis (FAP). A candidate gene has been proposed, namely secretory phospholipase A2 (sPLA2). Increased tumor number in mice was correlated with low levels of sPLA2 expression and the presence of truncating mutations within the sPLA2 gene. In an attempt to determine whether any genetic alterations in the sPLA2 gene were associated with the expression of FAP in man, we investigated the genetic structure of sPLA2 in 97 polyposis coli patients presenting with various disease phenotypes, and its expression in 8 FAP patients displaying markedly different disease characteristics. In the current study no inactivating mutations in the sPLA2 gene were identified, suggesting that human sPLA2 is not associated with phenotypic variation in FAP. Received: 25 March 1996 / Revised: 9 April 1996  相似文献   

6.
Among 23 germline mutations identified in the APC screening of 45 familial adenomatous polyposis (FAP) patients, we have found 10 different novel frameshift mutations in 11 apparently unrelated patients. In two cases, an additional missense mutation was detected. One previously described as a causative germline mutation (S2621C), associated with a 1-bp insertion (4684insA) on the opposite allele, did not segregate with the FAP phenotype in the family and was therefore considered as being non-pathogenic. The other (Z1625H) was located 2 codons before a 1-bp deletion (4897delC). Both mutations were transmitted together from an FAP father to his affected son. The FAP phenotype of these 10 novel truncating mutations was clinically documented within their kindreds. Important variability was observed in the phenotype. Interestingly, we noted that a mutation (487insT) localized at the boundary of the 5’ attenuated APC phenotype region in two unrelated families resulted in classical polyposis. A clear-cut genotype-phenotype correlation could be drawn in only two instances. In one family, a 4684insA mutation led to a mild polyposis associated with early inherited osteomas and, in the family bearing the double mutation (Z1625H+4897delC), the phenotype was obviously a 3′ attenuated type. Our data illustrate the wide genetic and phenotypic heterogeneity of this condition between and within the families, making the establishment of correlations complex and any prediction in this disease difficult, although targeting the mutation site may be helpful in some specific cases. Received: 11 February 1997 / Accepted: 11 April 1997  相似文献   

7.
家族性腺瘤息肉病(FAP)是第二常见的遗传性结直肠癌综合征,多在青春期发病,发病率约1/10000,主要临床表现为大肠中多发的腺瘤性息肉,是一种结直肠癌的癌前病变,如果不予治疗,几乎100%的患者会发展成为结直肠癌。一直以来,FAP被认为是一种常染色体显性遗传疾病,发病由APC基因胚系突变引起。根据临床特点的不同,FAP患者可以分为经典型FAP(CFAP)和轻表型FAP(AFAP)。然而近年来,在一些无APC基因胚系突变的FAP患者中发现了Mut YH基因的双等位基因突变。这种由于Mut YH基因双等位基因突变而无APC生殖突变所引起的临床综合征定义为Mut YH基因相关性息肉病[2](MAP)。MAP为常染色体隐性遗传,是一种特殊类型的FAP。另外,很多研究表明,APC基因的突变位点与结肠腺瘤病的严重程度、癌变的风险程度和某些肠外表现相关。MAP的发现和对FAP基因型-表型相关性的研究,完善了对FAP遗传病因学的认识,对于FAP患者及高危亲属的合理防治和预后具有重要的意义。  相似文献   

8.
Up to 5% of colorectal cancer cases are caused by a monogenic inherited disposition. Among these, hereditary nonpolyposis colorectal cancer (Lynch syndrome, HNPCC) accounts for 2–3% and adenomatous polyposis syndromes (familial adenomatous polyposis, FAP and MUTYH-associated polyposis, MAP) for about 1% of cases. Hamartomatous polyposis syndromes (juvenile polyposis syndrome, Peutz-Jeghers syndrome and Cowden syndrome) are rare disorders that are also associated with an increased colorectal cancer risk. The genetic basis is largely known for the tumour syndromes mentioned above. The identification of the causative germline mutation in the respective DNA repair genes (e.g. in HNPCC and MAP) or tumour suppressor genes (FAP or hamartomatous polyposis syndromes) allows confirmation of the diagnosis in affected individuals and provides predictive diagnostics for their healthy relatives. To achieve a targeted and useful molecular diagnostics, it is important that the clinician provides a detailed characterisation of the clinical picture; moreover, family history may also give a hint of the underlying gene defect. The screening of tumour tissue for the presence of a mismatch repair defect should precede mutation analysis in suspected cases of HNPCC, as it is difficult to differentiate between this condition and sporadic colorectal cancer. In contrast, mutation analysis can be directly performed in polyposis syndromes provided the syndrome has been correctly classified by the histology of polyps.  相似文献   

9.
The MUTYH gene encodes a key glycosylase of the base-excision repair system that is involved in maintaining genomic DNA stability against oxidative damage. Biallelic germline MUTYH mutations have been proved to greatly predispose to non-familial adenomatous polyposis (FAP) and non-hereditary non-polyposis colorectal cancer (HNPCC) familial recessive forms of colorectal cancer with multiple adenomas. To date, there is still much debate over the impact of monoallelic germline MUTYH mutations on colorectal carcinogenesis. To evaluate their role in the susceptibility to sporadic colon and rectum cancers, we screened 1024 French sporadic colorectal cancer cases and 1121 French healthy controls for Caucasian MUTYH-associated polyposis mutations, including already known mutations p.Gly382Asp and p.Tyr165Cys, and new mutation p.Val479Phe. We observed a nonstatistically significant association between these MUTYH mutations at a heterozygous state and an increase in colorectal cancer risk (odds ratio [OR] 1.26, 95% confidence interval [CI] 0.70-2.27). As a result, we conclude that heterozygous MUTYH mutations do not play a major role in sporadic colorectal carcinogenesis although a modest effect on this process cannot be ruled out.  相似文献   

10.
Colorectal cancer still represents one of the most common causes of morbidity and mortality among Western populations. The adenomatous polyposis coli (APC) gene, originally identified as the gene responsible for familial adenomatous polyposis (FAP), an inherited predisposition to multiple colorectal tumors, is now considered as the true "gatekeeper" of colonic epithelial proliferation. It is mutated in the vast majority of sporadic colorectal tumors, and inactivation of both APC alleles occurs at early stages of tumor development in man and mouse. The study of FAP has also led to one of the most consistent genotype-phenotype correlations in hereditary cancer. However, great phenotypic variability is still observed not only among carriers of the identical APC mutation from unrelated families but also from within the same kindred. The generation of several mouse models carrying specific Apc mutations on the same inbred genetic background has confirmed the genotype-phenotype correlations initially established among FAP patients, as well as provided important insights into the mechanisms of colorectal tumor formation. Here we review the major features of the available animal models for FAP and attempt the formulation of a hypothetical model for APC-driven tumorigenesis based on the observed genetic and phenotypic variability in mouse and man.  相似文献   

11.
Germline mutations of the adenomatous polyposis coli ( APC) gene cause familial adenomatous polyposis (FAP), an autosomal, dominantly inherited disease that predisposes patients to colorectal cancer. The APC gene is composed of 15 coding exons and encodes an open reading frame of 8.5 kb. The 3' 6.5 kb of the APCopen reading frame is encoded by a single exon, exon 15. Most identified APC mutations are at the 5' half of the APC open reading frame and are nucleotide substitutions and small deletions or insertions that result in truncation of the APC protein. Very few well-characterized gross alterations of APC have been reported. Patients with FAP typically develop hundreds to thousands of colorectal tumors beginning in their adolescence. A subgroup of patients with FAP who develop fewer tumors at an older age have what is called attenuated FAP (AFAP). Accumulating evidence indicates that patients carrying germline APC mutations in the first four coding exons, in the alternatively spliced region of exon 9, or in the 3' half of the coding region usually develop AFAP. We characterized two germline APC alterations that deleted the entire APC exon 15 as the result of 56-kb and 73-kb deletions at the APC locus. A surprising finding was that one proband had the typical FAP phenotype, whereas the other had a phenotype consistent with that of AFAP.  相似文献   

12.
Summary Familial adenomatous polyposis (FAP), which includes familial polyposis coli (FPC) and the Gardner syndrome (GS), is a genetically determined premalignant disease of the colon inherited by a locus (APC) mapping within 5q15–q22. To elucidate the role of 5q loss in FAP tumorigenesis, we analysed 51 colorectal tumors and seven desmoids from 19 cases of FPC and five GS patients, as well as 15 sporadic colon cancers. RFLP analysis revealed a high incidence of allelic deletion in hereditary colon cancers as well as in sporadic colon cancers with a peak at the APC locus. APC loss resulted primarily from interstitial deletion or mitotic recombination. Combined tumor and pedigree analysis in a GS family revealed loss of normal 5q alleles in three tumors, including a desmoid tumor, which suggests the involvement of hemizygosity or homozygosity of the defective APC gene in colon carcinogenesis and, possibly, in extracolonic neoplasms associated with FAP.  相似文献   

13.
Inherited mutations of the APC gene predispose carriers to multiple adenomatous polyps of the colon and rectum and to colorectal cancer. Mutations located at the extreme 5' end of the APC gene, however, are associated with a less severe disease known as attenuated adenomatous polyposis coli (AAPC). Many individuals with AAPC develop relatively few colorectal polyps but are still at high risk for colorectal cancer. We report here the identification of a 5' APC germline mutation in five separately ascertained AAPC families from Newfoundland, Canada. This disease-causing mutation is a single basepair change (G to A) in the splice-acceptor region of APC intron 3 that creates a mutant RNA without exon 4 of APC. The observation of the same APC mutation in five families from the same geographic area demonstrates a founder effect. Furthermore, the identification of this germline mutation strengthens the correlation between the 5' location of an APC disease-causing mutation and the attenuated polyposis phenotype.  相似文献   

14.
Germline mutations of the adenomatous polyposis coli (APC) tumor-suppressor gene result in the hereditary colorectal cancer syndrome familial adenomatous polyposis (FAP). Almost all APC mutations that have been identified are single-nucleotide alterations, small insertions, or small deletions that would truncate the protein product of the gene. No well-characterized intragenic rearrangement of APC has been described, and the prevalence of this type of mutation in FAP patients is not clear. We screened 49 potential FAP families and identified 26 different germline APC mutations in 30 families. Four of these mutations were genomic rearrangements resulting from homologous and nonhomologous recombinations mediated by Alu elements. Two of these four rearrangements were complex, involving deletion and insertion of nucleotides. Of these four rearrangements, one resulted in the deletion of exons 11 and 12 and two others resulted in either complete or partial deletion of exon 14. The fourth rearrangement grossly altered the sequence within intron 14. Although this rearrangement did not affect any coding sequence of APC at the genomic DNA level, it caused inappropriate splicing of exon 14. These rearrangements were initially revealed by analyzing cDNAs and could not have been identified by using mutation detection methods that screened each exon individually. The identification of a rearrangement that did not alter any coding exons yet affected the splicing further underscores the importance of using cDNA for mutation analysis. The identification of four genomic rearrangements among 30 mutations suggests that genomic rearrangements are frequent germline APC mutations.  相似文献   

15.
Familial adenomatous polyposis (FAP) is an inherited predisposition to colorectal cancer characterized by the development of numerous adenomatous polyps predominantly in the colorectal region. Germline mutations in the adenomatous polyposis coli (APC) gene are responsible for most cases of FAP. Mutations at the 5′ end of APC are known to be associated with a relatively mild form of the disease, called attenuated adenomatous polyposis coli (AAPC). We identified a frameshift mutation in the 3′ part of exon 15, resulting in a stop codon at 1862, in a large Dutch kindred with AAPC. Western blot analysis of lymphoblastoid cell lines derived from affected family members from this kindred, as well as from a previously reported Swiss family carrying a frameshift mutation at codon 1987 and displaying a similar attenuated phenotype, showed only the wild-type APC protein. Our study indicates that chain-terminating mutations located in the 3′ part of APC do not result in detectable truncated polypeptides and we hypothesize that this is likely to be the basis for the observed AAPC phenotype. Received: 18 June 1996 / Revised: 8 July 1996  相似文献   

16.
Germ-line mutations in the adenomatous polyposis coli (APC) gene are responsible for familial adenomatous polyposis (FAP). Genotype-phenotype correlation studies in patients with FAP have demonstrated associations of certain variants of the disease with mutations at specific sites within the APC gene. In a large FAP family, we identified a frameshift mutation located in the alternatively spliced region of exon 9. Phenotypic studies of affected family members showed that the clinical course of FAP was delayed, with gastrointestinal symptoms and death from colorectal carcinoma occurring on average 25 and 20 years later than usual, respectively. The numbers of colorectal adenomas differed markedly among affected individuals and the location of colorectal cancer lay frequently in the proximal colon. Our findings suggest that the exon 9 mutation identified in the pedigree is associated with late onset of FAP. The atypical phenotype may be explained by the site of the mutation in the APC gene. Analysis of the APC protein product indicated that the exon 9 mutation did not result in a detectable truncated APC protein. Given the location of the mutation within an alternatively spliced exon of APC, it is conceivable that normal APC proteins are produced from the mutant allele by alternative splicing.  相似文献   

17.
Kim IJ  Kim K  Kang HC  Jang SG  Park JG 《Genetic testing》2008,12(2):295-298
The adenomatous polyposis coli (APC), which is the susceptible gene for familial adenomatous polyposis (FAP) and sporadic colorectal cancer, spans 15 exons. The open reading frame of APC is 8529 bp, which encodes 2843 amino acids. Conventional genetic screening involves extensive time as well as high cost and labor. Thus, we developed a novel APC ready-to-use plate for high-throughput mutational analysis by denaturing high performance liquid chromatography (DHPLC). To prepare the ready-to-use APC plate, all 38 primer pairs and PCR mixtures were aliquoted into individual wells of a 96-well plate, and frozen at -20 degrees C until use. All 38 PCR primers were designed to be amplified at the same temperature (52 degrees C). We examined a total of 27 FAP patient samples with APC germline mutations (17 for multiple bp deletions, 1 for 1 bp deletion, 9 for nonsense mutations) and 50 APC-negative noncarriers. All 17 multiple bp deletion mutations were detected during the initial 50 degrees C running analysis and thus ruled out for further analyses. All other mutations were clearly detected under specific optimized conditions. More than 50% of the APC germline mutations were multiple base pair deletions and efficiently selected by omitting time-consuming partial denaturing conditions.  相似文献   

18.
The APC gene is mutated in familial adenomatous polyposis (FAP) as well as in sporadic colorectal tumours. The product of the APC gene is a 300 kDa cytoplasmic protein associated with the adherence junction protein catenin. Here we show that overexpression of APC blocks serum-induced cell cycle progression from G0/G1 to the S phase. Mutant APCs identified in FAP and/or colorectal tumours were less inhibitory and partially obstructed the activity of the normal APC. The cell-cycle blocking activity of APC was alleviated by the overexpression of cyclin E/CDK2 or cyclin D1/CDK4. Consistent with this result, kinase activity of CDK2 was significantly down-regulated in cells overexpressing APC although its synthesis remained unchanged, while CDK4 activity was barely affected. These results suggest that APC may play a role in the regulation of the cell cycle by negatively modulating the activity of cyclin-CDK complexes.  相似文献   

19.
20.
Mutations in the adenomatous polyposis coli (APC) gene are responsible for the disease familial adenomatous polyposis (FAP), a dominantly inherited predispostion to colorectal cancer. The most common extra-colonic manifestation is congenital hypertrophy of the retinal pigment epithelium (CHRPE), expressed in up to 90% of FAP kindreds. Chain-terminating APC mutations were characterised in 26 unrelated FAP patients. Results show that CHRPE expression is determined by the length of truncated protein product. CHRPE is therefore the first extracolonic manifestation of FAP to be shown to be under the control of the APC mutation site and should facilitate the detection of constitutional APC mutations in FAP kindreds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号