首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Magnetic circular dichroism (MCD) spectra of Pseudomonas aeruginosa cytochrome oxidase are reported over the spectral range of 350–700 nm for the oxidized, ascorbate-reduced, dithionite-reduced and reduced carbon monoxide forms. The spectra of all forms examined can be interpreted as the simple sum of the individual heme c and heme d1 contributions without invoking “heme-heme interaction.” In particular and contrary to a recent report [Orii, Shimada, Nozawa, and Hatano, this Journal 76, 983 (1977)] no effect of ligand binding to ferrous heme d1 was observed in the MCD spectrum of the heme c component. It seems likely that the previous findings were the result of incomplete reduction of the enzyme in the absence of stabilizing ligands.  相似文献   

2.
The nature of the heme centers in the hexa-heme dissimilatory nitrite reductase from the bacterium Wolinella succinogenes has been investigated with EPR and magnetic circular dichroism spectroscopy. The EPR spectrum of the ferric enzyme is complex showing, in addition to magnetically isolated low-spin ferric hemes with g values of 2.93, 2.3 and 1.48, two sets of signals at g = 10.3, 3.7 and 4.8, 3.21, which we assign to two pairs of exchange coupled hemes. The MCD spectra show that the isolated hemes are bis-histidine coordinated and that there is one high-spin ferric heme. The exchange coupling is lost on treatment with SDS.  相似文献   

3.
A detailed study is presented of the room-temperature absorption, natural and magnetic circulation-dichroism (c.d. and m.c.d.) spectra of cytochrome c oxidase and a number of its derivatives in the wavelength range 700-1900 nm. The spectra of the reduced enzyme show a strong negative c.d. band peaking at 1100nm arising from low-spin ferrous haem a and a positive m.c.d. peak at 780nm assigned to high-spin ferrous haem a3. Addition of cyanide ion doubles the intensity of the low-spin ferrous haem c.d. band and abolishes reduced carbonmonoxy derivative the haem a32+-CO group shows no c.d. or m.c.d. bands at wavelengths longer than 700nm. A comparison of the m.c.d. spectra of the oxidized and cyanide-bound oxidized forms enables bands characteristic of the high-spin ferric form of haem a33+ to be identified between 700 and 1300nm. At wavelengths longer than 1300nm a broad positive m.c.d. spectrum, peaking at 1600nm, is observed. By comparison with the m.c.d. spectrum of an extracted haem a-bis-imidazole complex this m.c.d. peak is assigned to one low-spin ferric haem, namely haem a3+. On binding of cyanide to the oxidized form of the enzyme a new, weak, m.c.d. signal appears, which is assigned to the low-spin ferric haem a33+-CN species. A reductive titration, with sodium dithionite, of the cyanide-bound form of the enzyme leads to a partially reduced state in which low-spin haem a2+ is detected by means of an intense negative c.d. peak at 1100 nm and low-spin ferric haem a33+-CN gives a sharp positive m.c.d. peak at 1550nm. The c.d. and m.c.d. characteristics of the 830nm absorption band in oxidized cytochrome c oxidase are not typical of type 1 blue cupric centres.  相似文献   

4.
5.
We have measured the magnetic circular dichroism of cytochrome c peroxidase and some of its derivatives from 250-350 nm. Comparison of the changes observed on conversion to the catalytic intermediate (cytochrome c peroxidase-I) with spectra obtained from horseradish peroxidase and its derivatives and model compounds of protoheme leads us to the conclusion that the observed changes in the magnetic circular dichroism spectra reflect conversion of the heme to the ferryl state. No evidence was found for modification of tryptophan in cytochrome c peroxidase-I.  相似文献   

6.
The optical properties of Pseudomonas cytochrome oxidase (ferrocytochrome-c:oxygen oxidoreductase, EC 1.9.3.2) were monitored as a function of guanidine hydrochloride (Gdn X HCl) concentration to probe for differential stabilization of its prosthetic groups, heme d1 and heme c. The protein fluorescence intensity increased with the Gdn X HCl concentration, revealing two transitions, a sharp one between 1.3 and 1.5 M Gdn X HCl, and a second less well defined extending from 2.5 to 4.5 M. Only the transition at the lower Gdn X HCl concentrations was present in titrations followed using the emission maxima. The spectral maximum for native Pseudomonas cytochrome oxidase was at approx. 335 nm and shifted to approx. 350 nm above 2 M Gdn X HCl. The heme d1 absorbance at 638 nm decreased with increasing [Gdn X HCl], giving a transition at 1.3-1.5 M, and no transition up to 4 M Gdn X HCl when the heme c was monitored at 525 nm. Along with the decrease at 638 nm, an absorption band appeared at 681 nm, suggesting heme d1 release into solution. Fluorescence titration of heme d1-depleted enzyme, prepared by gel filtration, showed a single transition similar to the transition occurring in the intact enzyme at high Gdn X HCl concentrations. Circular dichroism spectra revealed clearly distinguishable transitions for the heme d1 and heme c near 1.5 and 3.0 M Gdn X HCl, respectively. These results suggest that the two hemes are in regions of the protein with different stabilities which may represent distinct structural domains.  相似文献   

7.
Circular dichroism and 1H and 31P nuclear magnetic resonance spectroscopy have been used to investigate complex formation between cytochrome c and the flavodoxins from Azotobacter vinelandii and Clostridium pasteurianum. Such complexes are known to be involved in the mechanism of electron transfer between these two redox proteins. A large increase in ellipticity in the Soret band of the cytochrome heme was observed upon formation of the Clostridium flavodoxin complex, whereas much smaller changes were found for the complexes with either Azotobacter flavodoxin or an 8 alpha-imidazolyl-FMN-substituted Clostridium flavodoxin analogue. Similarly, the magnitudes of the perturbations of the contact-shifted heme proton resonances obtained upon complexation of cytochrome c by Azotobacter flavodoxin were much smaller than those previously shown for Clostridium flavodoxin [Hazzard, J. T., & Tollin, G. (1985) Biochem. Biophys. Res. Commun. 130, 1281-1286]. 31P nuclear magnetic resonance measurements were also consistent with differences in the interactions between the components in the complexes of the two flavodoxins with cytochrome c. It is suggested that these spectral changes are due to a loosening or opening of the heme crevice upon Clostridium flavodoxin binding, which allows closer contact between the heme and flavin prosthetic groups and results in a faster rate of electron transfer. The implications of these observations for biological oxidation-reduction processes are considered.  相似文献   

8.
9.
Ultraviolet circular dichroism spectrum of purified NADPH cytochrome P-450 reductase was characterized by two negative bands centered at 208 and 222 nm. The approximation of the alpha-helical content from the value of the mean residue ellipticity at 222 nm indicated 28% of alpha-helical structures. Heat inactivation of the enzyme was associated to a drastic change in the secondary structure of the protein. Membrane reconstitution experiments by inclusion of the enzyme into liposomes revealed that the conformation of NADPH cytochrome P-450 reductase was sensitive to its phospholipid environment. Egg lecithin as well as synthetic phosphatidylcholines, at the optimal phospholipid-enzyme molar ratio 200, was able to increase up to 37% the mean residue ellipticity at 222 nm. Addition of phosphatidylserine or phosphatidylethanolamine produced no effect. Non-ionic detergent such as Emulgen 913 weakly enhanced the mean residue ellipticity.  相似文献   

10.
Investigations of DNA using CD spectroscopy show that the P-form is available in a wide variety of methanol–ethanol mixtures when the water content is low. Increasing the temperature or the ethanol content of a 95% methanol solution causes DNA to undergo a cooperative transition to the P-form. However, this transition cannot be reversed on cooling, or on adding methanol. Thus P-form DNA appears to be stable at high methanol concentrations, but it is usually not observed because the DNA is trapped by a kinetic barrier. P-form DNA will instantaneously assume the native B-form on addition of water, confirming earlier reports that P-form DNA is not strand separated [E. Kay (1976) Biochemistry 15 , 5241]. CD spectra extended to 190 nm show that there is no base–base interaction in the P-form. However, the P-form is extremely stable to heat denaturation in solvents which promote hydrogen bonding between the base pairs. A number of models that can account for the properties of P-form DNA are discussed.  相似文献   

11.
12.
The magnetic circular dichroism (MCD) properties of numerous oxidation and ligation state derivatives of myoglobin and horseradish peroxidase reconstituted with an iron octa-alkylporphyrin (mesoheme IX) have been investigated in order to establish the utility of such porphyrins as models for protoporphyrin IX-containing systems. The MCD spectra of the mesoheme-reconstituted proteins are blue-shifted (4-12 nm) and are somewhat more intense (1.5-2.5 fold) when compared to the spectra of analogous derivatives of native myoglobin and horseradish peroxidase. However, the spectral band patterns of the mesoheme-reconstituted proteins closely resemble those of the native proteins in essentially all cases. These data demonstrate that octa-alkylporphyrins can be productively used as models for protoporphyrin IX in studies of heme proteins with MCD spectroscopy.  相似文献   

13.
The electron paramagnetic resonance (EPR) and near-infrared magnetic circular dichroism (MCD) spectra of the azide and cyanide adducts of nitrimyoglobin and hydroperoxidase II from Escherichia coli have been measured at cryogenic temperatures. For the first time, ligand-to-metal charge-transfer transitions in the near-infrared have been observed for an Fe(III)-chlorine system. It is shown that near-ultraviolet-to-visible region electronic spectra of 'green' hemes such as these are an unreliable indicator of macrocycle type. However, the combined application of EPR and near-infrared MCD spectroscopies clearly distinguishes between the porphyrin-containing nitrimyoglobin and the chlorine-containing hydroperoxidase II.  相似文献   

14.
The spin states of the haem components of mixed-valence cytochrome oxidase were studied at room temperature and at temperature down to 20K by using magnetic circular dichroism. The room-temperature studies show the presence of a low-spin ferrous haem together with a low-spin ferric haem, which we attribute to heams a3 and a respectively. At temperatures below 100K it appears that the CO of the mixed-valence CO complex may be irreversibly photolysed, and that in this case haems a and a3 assume their high-spin states. Thus in this enzyme haem-haem interactions appear possible at temperatures below 100K.  相似文献   

15.
The circular dichroism (CD) spectra of complexes between aromatic hydrocarbons and quinolines with DNA and complexes between proflavine and nucleic acids have been measured.  相似文献   

16.
Cytochrome cd1 nitrite reductase has been purified from Pseudomonas stutzeri strain JM 300. This enzyme appears to be a dimer with a subunit molecular mass of 54 kDa and its isoelectric point is determined to be 5.4. The N terminus of amino acid sequence has strong homology with that of nitrite reductase from P. aeruginosa. The apoprotein of this enzyme has been reconstituted with native and synthetic heme d1. The nitrite reductase activity measured by NO and N2O gas evolution can be restored to 82% of the activity of the original enzyme when the protein was reconstituted with the native heme d1 and to 77% of the activity when reconstituted with the synthetic heme d1. The absorption spectra of both reconstituted enzymes are essentially identical to that of the original nitrite reductase. These results further substantiate the novel dione structure of heme d1 as proposed. The loss of NO2- reducing activity in the absence of heme d1 and its restoration by addition of heme d1 provides further evidence that heme d1 plays a key role in the conversion of NO2- to NO and N2O.  相似文献   

17.
Ferredoxin (Fd), which plays a pivotal role in photosynthesis as an electron carrier, forms a transient complex with various Fd-dependent enzymes, such as nitrite reductase (NiR), to achieve efficient intermolecular electron transfer. We studied the protein-protein interaction of Fd and NiR by NMR spectroscopy and determined three acidic regions of Fd to be major sites for the interaction with NiR, indicating that the complex is stabilized through electrostatic interaction. During this study, we found Fds from higher plant and cyanobacterium, in spite of their high structural similarities including the above acidic regions, differ remarkably in the interaction with cyanobacterial NiR. In activity assay of NiR, K(m) value for maize Fd (74.6 μM) was 9.6 times larger than that for Leptolyngbya boryana Fd (7.8 μM). The two Fds also showed a similar difference in binding assay to NiR-immobilized resin. Comparative site-specific mutagenesis of two Fds revealed that their discriminative ability for the interaction with NiR is attributed mainly to non-charged residues in the peripheral region of [2Fe-2S] cluster. These non-charged residues are conserved separately between Fds of plant and cyanobacterial origins. Our data highlight that intermolecular force(s) other than electrostatic attraction is(are) also crucial for the molecular interaction between Fd and partner enzyme.  相似文献   

18.
Visible and near infrared magnetic circular dichroism (MCD) spectra of heme proteins and enzymes as well as those of a protein-free heme bound to 2-methylimidazole were recorded and compared at 4.2 K in unrelaxed metastable and relaxed equilibrium heme stereochemistry. The relaxed and unrelaxed stereochemistries of a 5-coordinate ferrous heme were generated by chemical reduction of iron at room temperature before freezing the sample and by photolysis of CO or O2 complexes at 4.2 K, respectively. The results are discussed in terms of a protein contribution into energies of the Fe-N epsilon(His) and Fe-N(pyrrols) bonds and their change on a ligand binding. We observed and analyzed cases of weak (myoglobin, hemoglobin) and strong (leghemoglobin, peroxidases) constraints imposed by the protein conformation on the proximal heme stereochemistry by comparing the bond energies in proteins with those in the protoheme-(2-methylimidazole) model compound. The role of a protein moiety in modulating the ligand binding properties of leghemoglobin and the heme reactivity of horseradish peroxidase is discussed.  相似文献   

19.
《FEBS letters》1997,412(2):365-369
In Pseudomonas aeruginosa, conversion of nitrite to NO in dissimilatory denitrification is catalyzed by the enzyme nitrite reductase (NiR), a homodimer containing a covalently bound c heme and a d1 heme per subunit. We report the purification and characterization of the first single mutant of P. aeruginosa cd1 NiR in which Tyr10 has been replaced by Phe; this amino acid was chosen as a possibly important residue in the catalytic mechanism of this enzyme based on the proposal (Fülöp, V., Moir, J.W.B., Ferguson, S.J. and Hajdu, J. (1995) Cell 81, 369–377) that the topologically homologous Tyr25 plays a crucial role in controlling the activity of the cd1 NiR from Thiosphaera pantotropha. Our results show that in P. aeruginosa NiR substitution of Tyr10 with Phe has no effect on the activity, optical spectroscopy and electron transfer kinetics of the enzyme, indicating that distal coordination of the Fe3+ of the d1 heme is provided by different side-chains in different species.  相似文献   

20.
Optical absorption, mcd, and epr spectroscopy have been used to characterize the azide and imidazole derivatives of oxidized Pseudomonas nitrite reductase. At pH 7.0 azide binds solely to heme d1 with an affinity constant, Kaff = 360 M-1, whereas imidazole binds to both hemes c and d1 with kaff = 35 and 55 M-1, respectively. Low-temperature mcd and epr spectroscopy indicate that c and d1 are low-spin ferrihemes in both derivatives, although the epr of the heme d1-azide component is very weak and requires explanation. Attempts to obtain a high-spin heme d1 in the intact enzyme using the weak field ligands fluoride and thiocyanate have proved unsuccessful. Electron paramagnetic resonance experiments involving an oxidized enzyme derivatives in which heme d1 is complexed by NO, and hence epr silent, have enabled unambiguous assignment of the epr spectrum of Pseudomonas nitrite reductase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号