首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Animals that cling to walls and walk on ceilings owe this ability to micrometre and nanoscale attachment elements. The highest adhesion forces are encountered in geckoes, which have developed intricate hierarchical structures consisting of toes (millimetre dimensions), lamella (400-600microm size), setae (micrometre dimensions) and spatulae ( approximately 200nm size). Adhesion forces of setae on different substrates have previously been measured by a micro-electromechanical system technique. Here we report the first successful experiments in which the force-displacement curves were determined for individual spatulae by atomic force microscopy. The adhesion force for these smallest elements of the gecko's attachment system is reproducibly found to be about 10nN. This method sheds new light on the nanomechanisms of attachment and will help in the rational design of artificial attachment systems.  相似文献   

2.
Attachment devices are essential adaptations for climbing animals and valuable models for synthetic adhesives. A major unresolved question for both natural and bioinspired attachment systems is how attachment performance depends on size. Here, we discuss how contact geometry and mode of detachment influence the scaling of attachment forces for claws and adhesive pads, and how allometric data on biological systems can yield insights into their mechanism of attachment. Larger animals are expected to attach less well to surfaces, due to their smaller surface-to-volume ratio, and because it becomes increasingly difficult to distribute load uniformly across large contact areas. In order to compensate for this decrease of weight-specific adhesion, large animals could evolve overproportionally large pads, or adaptations that increase attachment efficiency (adhesion or friction per unit contact area). Available data suggest that attachment pad area scales close to isometry within clades, but pad efficiency in some animals increases with size so that attachment performance is approximately size-independent. The mechanisms underlying this biologically important variation in pad efficiency are still unclear. We suggest that switching between stress concentration (easy detachment) and uniform load distribution (strong attachment) via shear forces is one of the key mechanisms enabling the dynamic control of adhesion during locomotion.  相似文献   

3.
Many insects possess smooth adhesive pads on their legs, which adhere by thin films of a two-phasic secretion. To understand the function of such fluid-based adhesive systems, we simultaneously measured adhesion, friction and contact area in single pads of stick insects (Carausius morosus). Shear stress was largely independent of normal force and increased with velocity, seemingly consistent with the viscosity-effect of a continuous fluid film. However, measurements of the remaining force 2 min after a sliding movement show that adhesive pads can sustain considerable static friction. Repeated sliding movements and multiple consecutive pull-offs to deplete adhesive secretion showed that on a smooth surface, friction and adhesion strongly increased with decreasing amount of fluid. In contrast, pull-off forces significantly decreased on a rough substrate. Thus, the secretion does not generally increase attachment but does so only on rough substrates, where it helps to maximize contact area. When slides were repeated at one position so that secretion could accumulate, sliding shear stress decreased but static friction remained clearly present. This suggests that static friction which is biologically important to prevent sliding is based on non-Newtonian properties of the adhesive emulsion rather than on a direct contact between the cuticle and the substrate.  相似文献   

4.
Phosphoinositides regulate the activities and localization of many cytoskeletal proteins involved in crucial biological processes, including membrane-cytoskeleton adhesion. Yet little is known about the mechanics of protein-phosphoinositide interactions, or about the membrane-attachment mechanics of any peripheral membrane proteins. Myosin-Ic (myo1c) is a molecular motor that links membranes to the cytoskeleton via phosphoinositide binding, so it is particularly important to understand the mechanics of its membrane attachment. We used optical tweezers to measure the strength and attachment lifetime of single myo1c molecules as they bind beads coated with a bilayer of 2% phosphatidylinositol 4,5-bisphosphate and 98% phosphatidylcholine. Adhesion forces measured under ramp-load ranged between 5.5 and 16 pN at loading rates between 250 and 1800 pN/s. Dissociation rates increased linearly with constant force (0.3-2.5 pN), with rates exceeding 360 s−1 at 2.5 pN. Attachment lifetimes calculated from adhesion force measurements were loading-rate-dependent, suggesting nonadiabatic behavior during pulling. The adhesion forces of myo1c with phosphoinositides are greater than the motors stall forces and are within twofold of the force required to extract a lipid molecule from the membrane. However, attachment durations are short-lived, suggesting that phosphoinositides alone do not provide the mechanical stability required to anchor myo1c to membranes during multiple ATPase cycles.  相似文献   

5.
昆虫卓越的爬行和附着能力来源于其精细的功能性黏附系统。根据形态结构的不同,昆虫的黏附系统可分为光滑型黏附垫和刚毛型黏附垫两种类型,二者在分泌液的支持下均能附着于几乎所有的光滑或粗糙的物体表面,而且这两种类型的黏附垫与界面的附着的形成均主要依赖于范德华力。本文综述了昆虫足的附着机制,包括光滑型和刚毛型两种黏附垫的结构和其形成附着的机理,以及黏附垫分泌液的功能、组成成分和释放机制,阐明了昆虫如何巧妙地解决稳定附着和快速脱附这一矛盾的问题,讨论了诸如界面的理化性质和环境湿度等环境因素对昆虫附着的影响,以期帮助人们深入地理解昆虫足的附着机制,并为其在仿生学等方面的应用提供理论依据。  相似文献   

6.
The adhesion to glass of L 1210 cells flowing in transparent parallel plate microchannel was studied by a cinematographic method. Most cells settle on the surface when their velocity immediately preceding attachment does not exceed approx. 100 μm/sec, the greatest adhesion rate accompanying relatively small velocities. The arrest of cells on the glass surface is either permanent or temporary and in a certain range of fluid velocities numerous cells are arrested several times consecutively for brief periods. Two types of surface attachment may be distinguished: cells are either totally immobilized on the surface (firm adhesion) or are able to perform under the influence of the fluid impulses some movements around the attachment site (loose adhesion). When the adherent cells are subjected to the shearing force of rapidly flowing fluid, they detach from the surface, the tearing away being frequently preceded by an accelerating gliding movement. The influence of hydrodynamic forces on the cell-surface interaction and adhesion processes is discussed, as well as some problems concerning possible mechanisms of the cell binding to the surface under dynamic conditions.  相似文献   

7.
Stick insects (Carausius morosus) have two distinct types of attachment pad per leg, tarsal “heel” pads (euplantulae) and a pre-tarsal “toe” pad (arolium). Here we show that these two pad types are specialised for fundamentally different functions. When standing upright, stick insects rested on their proximal euplantulae, while arolia were the only pads in surface contact when hanging upside down. Single-pad force measurements showed that the adhesion of euplantulae was extremely small, but friction forces strongly increased with normal load and coefficients of friction were 1. The pre-tarsal arolium, in contrast, generated adhesion that strongly increased with pulling forces, allowing adhesion to be activated and deactivated by shear forces, which can be produced actively, or passively as a result of the insects'' sprawled posture. The shear-sensitivity of the arolium was present even when corrected for contact area, and was independent of normal preloads covering nearly an order of magnitude. Attachment of both heel and toe pads is thus activated partly by the forces that arise passively in the situations in which they are used by the insects, ensuring safe attachment. Our results suggest that stick insect euplantulae are specialised “friction pads” that produce traction when pressed against the substrate, while arolia are “true” adhesive pads that stick to the substrate when activated by pulling forces.  相似文献   

8.
Insect tarsal attachment forces are thought to be influenced by the viscosity and surface tension of a thin film of adhesive liquid (wet adhesion). In beetles, this fluid has been shown to be composed mainly of lipophilic substances that are similar to the cuticular lipids. In this study we investigate whether and how the chemical composition of footprint lipids affects attachment forces in the Colorado potato beetle, Leptinotarsa decemlineata. After application of standardised mixtures of synthetic n-alkanes or alkenes, or a concentrated hydrocarbon extract to the surface of the elytra, we tested the beetles’ attachment performance using a beam force transducer. The results show that only the unsaturated components, but not the straight-chained alkanes reduced friction forces, confirming that attachment performance is influenced by the chemical composition of the adhesive secretion. We estimated the volume of footprint droplets and calculated a mean thickness of the liquid layer of 0.04 μm. The measured friction exceeded the viscous and capillary force expected for a film of this thickness. Therefore, alternative mechanisms (i.e. shear-thinning and solid-like behaviour) for the generation of attachment forces and their dependence on the chemical composition of the liquid are discussed.  相似文献   

9.
Hairy attachment devices that are not supplemented with fluid secretion have evolved independently in lizards and spiders. van der Waals forces have previously been shown to be responsible for excellent adhesive properties of these structures, but it has recently been reported that wetting phenomena also play an important role in such 'dry adhesives'. To investigate the effect of ambient humidity on the attachment of the living spider Philodromus dispar, traction force was measured on a smooth epoxy resin surface at relative humidities (RHs) of 15, 50, 70, 80 and 99 per cent. The results show that attachment ability is significantly higher at an intermediate humidity compared with that in a dry atmosphere and at high humidity. Water condensation on the substrate surface almost completely abolishes adhesion. Experimental results obtained may be explained by an increase in capillarity or changes in mechanical properties of setae and spatulae owing to water absorption by the cuticle at an intermediate RH. The results obtained show dry adhesion limits under different environmental conditions and are important for understanding spider biology.  相似文献   

10.
Shield bugs effectively attach themselves on both rough and smooth surfaces, but their advanced biological attachment devices have not been studied closely. Our fine structural examination of the attachment devices in the shield bug A. spinicolle reveals a unique system to achieve extraordinary adhesion that allows vertical climbing. Each appendage has a pair of tarsal claws that attach to rough substrates and a pair of pretarsal pulvilli that attach to smooth surfaces. Similar to other heteropteran insects, the pulvilli of this bug are categorized as a wet adhesion system, which makes use of an adhesive fluid from the pad secretion. However, this deformable pad creates a regular pattern of contact with the mating surface with a compact array of microfolds and setae with filamentous distal protrusions. To date, this distinctive microstructure in pulvilli pads has never been reported. These microstructural characteristics should be further studied to understand biological adhesion as well as create biomimetic applications.  相似文献   

11.
Evolutionarily optimized frictional devices of insects are usually adapted to attach to a variety of natural surfaces. Orthopteran attachment pads are composed of hexagonal outgrowths with smooth flexible surfaces. The pads are designed to balance the weight of the insect in different positions and on different materials. In a scanning electron microscopy study followed by freezing-substitution experiments, the ultrastructural architecture of the pad material was visualized. In friction experiments, the interaction was measured between the attachment pad and a polished silicon surface. The inner structure of this material contains distally directed rods, branching close to the surface, and spaces filled with fluid. The specific design of the pad material provides a higher frictional force in the distal direction. Frictional anisotropy is more enhanced at higher normal forces and lower sliding velocities. It is concluded that optimal mechanical functionality of biosystems is the result of a combination of surface structuring and material design.  相似文献   

12.
Many animals that locomote by legs possess adhesive pads. Suchorgans are rapidly releasable and adhesive forces can be controlledduring walking and running. This capacity results from the interactionof adhesive with complex mechanical systems. Here we presentan integrative study of the mechanics and adhesion of smoothattachment pads (arolia) in Asian Weaver ants (Oecophylla smaragdina).Arolia can be unfolded and folded back with each step. Theyare extended either actively by contraction of the claw flexormuscle or passively when legs are pulled toward the body. Regulationof arolium use and surface attachment includes purely mechanicalcontrol inherent in the arrangement of the claw flexor system. Predictions derived from a ‘wet’ adhesion mechanismwere tested by measuring attachment forces on a smooth surfaceusing a centrifuge technique. Consistent with the behavior ofa viscid secretion, frictional forces per unit contact arealinearly increased with sliding velocity and the increment stronglydecreased with temperature. We studied the nature and dimensions of the adhesive liquidfilm using Interference Reflection Microscopy (IRM). Analysisof ‘footprint’ droplets showed that they are hydrophobicand form low contact angles. In vivo IRM of insect pads in contactwith glass, however, revealed that the adhesive liquid filmnot only consists of a hydrophobic fluid, but also of a volatile,hydrophilic phase. IRM allows estimation of the height of theliquid film and its viscosity. Preliminary data indicate thatthe adhesive secretion alone is insufficient to explain theobserved friction and that rubbery deformation of the pad cuticleis involved.  相似文献   

13.
Cell adhesion to surfaces represents the basis for niche colonization and survival. Here we establish serial quantification of adhesion forces of different cell types using a single probe. The pace of single-cell force-spectroscopy was accelerated to up to 200 yeast and 20 mammalian cells per probe when replacing the conventional cell trapping cantilever chemistry of atomic force microscopy by underpressure immobilization with fluidic force microscopy (FluidFM). In consequence, statistically relevant data could be recorded in a rapid manner, the spectrum of examinable cells was enlarged, and the cell physiology preserved until approached for force spectroscopy. Adhesion forces of Candida albicans increased from below 4 up to 16 nN at 37°C on hydrophobic surfaces, whereas a Δhgc1-mutant showed forces consistently below 4 nN. Monitoring adhesion of mammalian cells revealed mean adhesion forces of 600 nN of HeLa cells on fibronectin and were one order of magnitude higher than those observed for HEK cells.  相似文献   

14.
Aureobasidium pullulans is a potentially pathogenic microfungus that produces and secretes the polysaccharide pullulan and other biomacromolecules, depending on the microbe's physiological state. The role of these macromolecules in mediating adhesion and attachment were examined. Interfacial forces and adhesion affinities of A. pullulans were probed for early-exponential phase (EEP) and late-exponential phase (LEP) cells, using atomic force microscopy (AFM). Biochemical assays showed that A. pullulans produces both pullulan and a uronic acid based polymer. The pullulan is not produced until the LEP, and it can be removed by treatment with pullulanase. Both adhesion forces between the microbe and the AFM tip (silicon nitride) and attachment of the cells to quartz sand grains were controlled by the density of the uronic acid polymer. Uronic acid polymers doubled in density between the EEP and the LEP and were unaffected by the enzyme pullulanase. Retention to quartz in a packed column was quantified using the collision efficiency (alpha), the fraction of collisions between the microbes, and the sand grains, that result in attachment. Adhesion forces and retention on glass were well correlated, with these values being higher for EEP cells (F(adh) = 7.65 +/-4.67 nN; alpha = 1.15) than LEP (F(adh) = 2.94 +/- 0.75; alpha = 0.49) and LEP + pullulanase cells (F(adh) = 2.33 +/-2.01 nN; alpha = 0.43). Steric interactions alone do not describe the adhesion behavior of this fungus, but they do provide information regarding the length and density of the macromolecules studied.  相似文献   

15.
J Marra  J Israelachvili 《Biochemistry》1985,24(17):4608-4618
We report direct measurements of the full interbilayer force laws (force vs. distance) between bilayers of various phosphatidylcholines and phosphatidylethanolamine in aqueous solutions. Bilayers were first deposited on molecularly smooth (mica) surfaces and the interbilayer forces then measured at a resolution of 1 A. Three types of forces were identified: attractive van der Waals forces, repulsive electrostatic (double-layer) forces, and (at short range) repulsive steric hydration forces. Double-layer forces, which arise from ion binding, were insignificant in monovalent salt solutions, e.g., NaCl up to 1 M, but were already present in solutions containing millimolar levels of CaCl2 and MgCl2, giving rise to forces in excellent agreement with theory. Ca2+ binds more strongly than Mg2+, and both bind less to lecithin bilayers in the fluid state (T greater than Tc). The plane of charge coincides with the location of the negative phosphate groups, while the effective plane of origin of the van der Waals force is 4-5 A farther out. In water, the adhesion energies are in the range 0.10-0.15 erg/cm2 for lecithins and approximately 0.8 erg/cm2 for phosphatidylethanolamine. The adhesion energies vary on addition of salt due to changes in the repulsive double-layer and hydration forces rather than to a change in the attractive van der Waals force. The short-range repulsive forces which balance the van der Waals force at separations of 10-30 A are due to a combination of hydration and steric repulsions, the latter arising from thermal motions of head groups and thickness fluctuations of fluid bilayers (above Tc). It is also concluded that bilayer fusion is not simply related to the interbilayer force law.  相似文献   

16.
This study is the first attempt to characterise the chemical composition of the secretion of the smooth pads of the locust Locusta migratoria and to relate this to the composition of the cuticle coverage of the pads and the wings. Gas-chromatography and mass-spectrometry (GC-MS) were the principal techniques used for the characterization of these materials. Secretion droplets were visualised and quantified with the aid of diverse microscopic techniques. The chemical composition of prints is shown to differ from the cuticle coverage, in particular, with respect to the fatty acid distribution: in the secretion, saturated and unsaturated fatty acids with chain lengths between C16 and C20 in both the free form and as glycerides predominate, whereas cuticle coverage contains waxes of long-chained fatty-acids bound to long-chain primary alcohols. The second important difference is the significant amount of glucose and other saccharides found in methanolyzates of the pad fluid. A considerable amount of the amino acids (up to 53%) was detected in the non-volatile portion of the fluid. Data obtained from the shock-freezing, carbon-platinum coating and replica preparation show that the secretory droplets contain nano-droplets on their surfaces. The results lead us to suggest that the pad secretion is an emulsion consisting of lipidic nano-droplets dispersed in an aqueous liquid. According to the chemical composition of the secretion, a high-viscosity of the fluid may be suggested. Presumably, the fluid is a kind of a coupling agent, promoting and strengthening adhesion between otherwise incompatible materials by providing the proximity of contact for intermolecular forces.  相似文献   

17.
Many animals possess adhesive pads on their feet,which are able to attach to various substrates while controlling adhesive forces during locomotion.This review article studies the morphology of adhesive devices in animals,and the physical mechanisms of wet adhesion and dry adhesion.The adhesive pads are either ‘smooth' or densely covered with special adhesive setae.Smooth pads adhere by wet adhesion,which is facilitated by fluid secreted from the pads,whereas hairy pads can adhere by dry adhesion or wet adhesion.Contact area,distance between pad and substrate,viscosity and surface tension of the liquid filling the gap between pad and substrate are the most important factors which determine the wet adhesion.Dry adhesion was found only in hairy pads,which occurs in geckos and spiders.It was demonstrated that van der Waals interaction is the dominant adhesive force in geckos' adhesion.The bio-inspired applications derived from adhesive pads are also reviewed.  相似文献   

18.
To enable strong attachment forces between pad and substrata, a high proximity between contacting surfaces is required. One of the mechanisms, which can provide an intimate contact of solids, is a high flexibility of both materials. It has been previously presumed that setae of hairy attachment pads of insects are composed of flexible cuticle, and are able to replicate the surface profile. The aim of this work was to visualise the contact behaviour of the setae by freezing-substitution technique to understand setal mechanics while adhering to a smooth surface. This approach revealed considerable differences in the area of the setal tips between contacting and non-contacting pulvilli. Based on the assumption that setae behave like a spring pushed by the tip, a spring constant of 1.31 N m(-1) was calculated from direct measurements of single setae by atomic force microscopy. In order to explain the relationship between the behaviour of the attachment setae at a microscale and leg movements, high-speed video recordings were made of walking flies. This data show that some proximal movement of the leg is present during contact formation with the substrate.  相似文献   

19.
周群  何斌 《生物物理学报》2009,25(5):361-365
许多昆虫足上有光滑吸附垫,通过二相分泌液粘附到各种表面。为理解这种基于液体的吸附系统的功能,用在螽斯身上绑细线的方法,测量其在不同表面的摩擦力和吸附力,并用高速摄像机观察足垫的构造及吸附和分离的动作,测试足垫与接触面的接触面积。结果表明螽斯的水平摩擦力大于垂直吸附力。足垫与表面接触时向身体方向拖动来增加摩擦力。分离时采用剥离的方法,但剥离方向与刚毛型足垫的相反,是从末梢端翘起分离,达到行动迅速且节省能量的目的。测试结果可用于机器人吸附足掌的仿生设计。  相似文献   

20.
With the aim of gaining more insight into the forces and molecular mechanisms associated with bilayer adhesion and fusion, the surface forces apparatus (SFA) was used for measuring the forces and deformations of interacting supported lipid bilayers. Concerning adhesion, we find that the adhesion between two bilayers can be progressively increased by up to two orders of magnitude if they are stressed to expose more hydrophobic groups. Concerning fusion, we find that the most important force leading to direct fusion is the hydrophobic attraction acting between the (exposed) hydrophobic interiors of bilayers; however, the occurrence of fusion is not simply related to the strength of the attractive interbilayer forces but also to the internal bilayer stresses (intrabilayer forces). For all the bilayer systems studied, a single basic fusion mechanism was found in which the bilayers do not "overcome" their short-range repulsive steric-hydration forces. Instead, local bilayer deformations allow these repulsive forces to be "bypassed" via a mechanism that is like a first-order phase transition, with a sudden instability occurring at some critical surface separation. Some very slow relaxation processes were observed for fluid bilayers in adhesive contact, suggestive of constrained lipid diffusion within the contact zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号