首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxygen equilibrium curves have been measured on human normal red blood cells, at the temperatures of 20, 25, 30, 37 and 41 degrees C, and at pHs ranging from 6.8 to 8.2. The thermodynamical parameters have been determined for the four successive steps of oxygenation and for overall oxygenation, according to the Adair and MWC models [Monod J, Wyman J, Changeux JP. On the nature of allosteric transitions: a plausible model. J Mol Biol 1965;12:88-118]. The heat release appears to be nearly equal for the four steps. At the first three steps, the delta H change is counterbalanced by a nearly equivalent change of delta S, resulting in a rather small delta G value. delta G is greater at the fourth step, because of diminution of this enthalpy-entropy compensation phenomenon. The four steps are both enthalpy and entropy driven. According to the MWC model, the T to R transition is endothermic, and allosteric quaternary transition occurs at binding of the third oxygen. The average heat release increases by 2.8 kcal/mol when pH raises from 7.4 to 8.2, but flattens below pH 7.4. After correction for the heat of solution of oxygen and for the heat of proton release (referred to intracellular pH), an intrinsic heat for oxygenation of the heme of approximately--13 kcal/mol is obtained for the successive steps of oxygenation (at pH 7.4, 37 degrees C). These results are compared with those previously obtained for pigeon and trout red blood cells.  相似文献   

2.
Stabilization of the T-state of hemoglobin   总被引:1,自引:0,他引:1  
The effect of inositol hexaphosphate and bezafibrate on binding of O2 and CO to HbAO at high concentrations (1 mM) has been evaluated using thin layer optical techniques. Data analysis shows 1) the occurrence of greatly reduced ligand dependent cooperativity (Hill slope of 2.23 for CO and 1.51 for O2), and 2) the presence of significant triply ligated species. The data fits a nested allosteric two-state MWC model in which the T state consists of two allosteric substrates, Tt and Tr, where Tt binds only to the alpha chains and Tr binds to both alpha and beta chains. The model indicates that the triply ligated species consists of a predominant amount of T form, agreeing with kinetic observations of CO ligated hemoglobin. The maximum amount of triply ligated R molecules (CO or O2) implicated is less than 1%, a result similar to that found previously for binding studies made in the absence of BZF and IHP.  相似文献   

3.
The heat of reaction of CO gas with the alpha2Mmetbeta2 and alpha2Mbeta2 species of the alpha-chain mutant hemoglobin M Iwate has been studied in buffers with different heats of ionization of 25degrees and in the absence of organic phosphates. For the alpha2Mmetbeta2deoxy species we find a small Bohr effect (0.12 mol of H+/mol of CO) which is in correspondence with that found in equilibrium studies. The heat of reaction, when corrected for proton reaction with buffer, is -18.4 +/- 0.3 kcal/mol of CO at pH 7.4 At pH 9 the same value is observed within experimental error. This value compares closely with heats of reaction of CO with myoglobin and with van't Hoff determinations of the heat of oxygen binding to isolated hemoglobin alpha and beta chains after correction for the heat of replacement of O2 by CO. Furthermore, an analysis of the differential heat of ligand binding as a function of the extent of reaction indicated that, within experimental error, the heat of reaction with the first beta-chain heme in alpha2Mmetbeta2deoxy is the same as the second. Since the quaternary Tleads to R transition is blocked in this mutant hemoglobin, we compared it with Hb A to estimate the enthalpic component of the allosteric T leads to R transition in Hb A. The heats of reaction with CO(g) and Hb A are -15.7 +/- 0.5 and -20.9 +/- 0.5 kcal/mol at pH 7.4 and 9.0, respectively. In going from the T to the R state we find an enthalpy of transition of 9 +/- 2.5 kcal at pH 7.4 and -12 +/- 2.5 kcal at pH 9.0. From published free energies of transsition we conclude the T leads to R transition is enthalpically controlled at p/ 7.4 but entropically controlled at pH 9.0 A near normal Bohr effect is estimated from heats of reaction of CO with alpha2Mdeoxybeta2deoxy in various buffers. A large than normal heat of reaction (-21.6 +/- 0.5 kcal/mol of CO) is attributed to the abnormal alpha chains in Hb M Iwate.  相似文献   

4.
Energetic basis of molecular recognition in a DNA aptamer   总被引:1,自引:0,他引:1  
The thermal stability and ligand binding properties of the L-argininamide-binding DNA aptamer (5'-GATCGAAACGTAGCGCCTTCGATC-3') were studied by spectroscopic and calorimetric methods. Differential calorimetric studies showed that the uncomplexed aptamer melted in a two-state reaction with a melting temperature T(m)=50.2+/-0.2 degrees C and a folding enthalpy DeltaH(0)(fold)=-49.0+/-2.1 kcal mol(-1). These values agree with values of T(m)=49.6 degrees C and DeltaH(0)(fold)=-51.2 kcal mol(-1) predicted for a simple hairpin structure. Melting of the uncomplexed aptamer was dependent upon salt concentration, but independent of strand concentration. The T(m) of aptamer melting was found to increase as L-argininamide concentrations increased. Analysis of circular dichroism titration data using a single-site binding model resulted in the determination of a binding free energy DeltaG(0)(bind)=-5.1 kcal mol(-1). Isothermal titration calorimetry studies revealed an exothermic binding reaction with DeltaH(0)(bind)=-8.7 kcal mol(-1). Combination of enthalpy and free energy produce an unfavorable entropy of -TDeltaS(0)=+3.6 kcal mol(-1). A molar heat capacity change of -116 cal mol(-1) K(-1) was determined from calorimetric measurements at four temperatures over the range of 15-40 degrees C. Molecular dynamics simulations were used to explore the structures of the unligated and ligated aptamer structures. From the calculated changes in solvent accessible surface areas of these structures a molar heat capacity change of -125 cal mol(-1) K(-1) was calculated, a value in excellent agreement with the experimental value. The thermodynamic signature, along with the coupled CD spectral changes, suggest that the binding of L-argininamide to its DNA aptamer is an induced-fit process in which the binding of the ligand is thermodynamically coupled to a conformational ordering of the nucleic acid.  相似文献   

5.
The kinetics of the reaction with oxygen and carbon monoxide of the homodimeric hemoglobin from the bivalve mollusc Scapharca inaequivalvis has been extensively investigated by flash and dye-laser photolysis, temperature jump relaxation, and stopped flow methods. The results indicate that cooperativity in ligand binding, already observed for oxygen at equilibrium, finds its kinetic counterpart in a large decrease of the oxygen dissociation velocity in the second step of the binding reaction. In the case of carbon monoxide, cooperativity is clearly evident in the increase of the combination velocity constant as the reaction proceeds. Therefore, the ligand-binding kinetics of this dimeric hemoglobin shows the characteristic features of the corresponding reactions of tetrameric hemoglobins. Analysis of the data in terms of the allosteric model proposed by Monod et al. (Monod, J., Wyman, J., and Changeux, J. P. (1965) J. Mol. Biol. 12, 88-118) has shown that the values of the allosteric parameters cannot be fixed uniquely for a dimeric hemoglobin. The rapid changes in absorbance observed at the isosbestic points of unliganded and liganded hemoglobin following laser photolysis provided a value of 7 X 10(4) S-1 at 20 degrees C for the rate of the ligand-free quarternary conformational change, postulated on the basis of cooperative ligand binding. Comparison of the rapid absorbance changes observed during ligand rebinding in this hemoglobin with those observed in tuna hemoglobin indicate that, at full photolysis, binding to the T state is followed by further binding and conversion to the liganded R state; at partial photolysis, population of the liganded T state occurs immediately and is followed by a decay to the liganded R state upon further ligand binding. These new results, in conjunction with previous equilibrium data on the same system, show unequivocally that the presence of two different types of chain is not an absolute prerequisite for cooperativity in hemoglobins, contrary to currently accepted ideas.  相似文献   

6.
Measurements of oxygen binding to bovine hemoglobin have been carried out over the temperature range 15-37 degrees C at pH 7.33. The standard enthalpy of oxygenation after correction for the heat of oxygen solution and of the Bohr protons is found to be -7.1 or -7.2 kcal/mol in the presence of 0.1 M chloride or bromide, respectively. This value is well below the -14.4 kcal/mol determined for human hemoglobin under identical experimental conditions. As reported by Fronticelli et al. (C. Fronticelli, E. Bucci and A. Razynska, J. Mol. Biol. 202 (1988) 343), the preferential binding of anions by bovine hemoglobin recognizes the various halides. Measurements at various temperatures reveal that this is true only above 25 degrees C. The halide recognition and the less exothermic enthalpy of oxygenation of bovine hemoglobin are probable due to oxygen-linked hydrophobic effects that are larger in bovine than in human hemoglobin.  相似文献   

7.
We use the low-temperature recombination kinetics of carbon monoxide with carp hemoglobin to determine that the R and T states of hemoglobin exhibit different low-temperature geminate recombination kinetics. The peak of the fitted Gaussian activation energy spectrum is at 1.5 kcal/mol for R state and 1.8 kcal/mol for T state. The distribution in activation energies is fit well by the Agmon-Hopfield linear strain model. The T state is fit with a stronger elastic constant than R, and has a larger displacement of the protein conformation coordinate than does the R state, indicating that the T state does have a significantly greater rigidity and also stores more strain energy in its conformational states than does R hemoglobin. The pre-exponential in the activation energy spectrum is only a factor of two greater in the R than the T state and the low-temperature activation energy spectrum does not correctly predict the difference in the on rates for R and T states at 300 degrees K, indicating that processes removed from the binding site are important in cooperativity.  相似文献   

8.
9.
The kinetics of O2 and CO binding to R-state human hemoglobin A0 and human hemoglobin cross-linked between the alpha chains at Lys99 residues were examined using ligand displacement and partial photolysis techniques. Oxygen equilibrium curves were measured by Imai's continuous recording method (Imai, K. (1981) Methods Enzymol. 76, 438-449). The rate of the R to T transition was determined after full laser photolysis of the carbon monoxide derivative by measuring the resultant absorbance changes at an isosbestic point for ligand binding. Chemical cross-linking caused the R-state O2 affinity of alpha subunits to decrease 6-fold compared with unmodified hemoglobin. This inhibition of O2 binding was the result of both a decrease in the rate constant for ligand association and an increase in the rate constant for dissociation. The O2 affinity of R-state beta subunits was reduced 2-fold because of an increase in the O2 dissociation rate constant. These changes were attributed to proximal effects on the R-state hemes as the result of the covalent cross-link between alpha chain G helices. This proximal strain in cross-linked hemoglobin was also expressed as a 5-fold higher rate for the unliganded R to T allosteric transition. The fourth O2 equilibrium binding constant, K4, measured by kinetic techniques, could be used to analyze equilibrium curves for either native or cross-linked hemoglobin. The resultant fitted values of the Adair constants, a1, a2, and a3 were similar to those obtained when K4 was allowed to vary, and the fits were of equal quality. When K4 was fixed to the kinetically determined value, the remaining Adair constants, particularly a3, became better defined.  相似文献   

10.
Knapp JE  Royer WE 《Biochemistry》2003,42(16):4640-4647
Cooperative ligand binding in the dimeric hemoglobin (HbI) from the blood clam Scapharca inaequivalvis is mediated primarily by tertiary structural changes, but with a small quaternary rearrangement (approximately 3 degrees), based on analysis of distinct crystal forms for ligated and unligated molecules. We report here ligand transition structures in both crystal forms. Binding CO to unligated HbI crystals results in a structure that approaches, but does not attain, the full allosteric transition. In contrast, removing CO from the HbI-CO crystals results in a structure that possesses all the key low affinity attributes previously identified from analysis of HbI crystals grown in the unligated state. Subsequent binding of CO shows the reversibility of this process. The observed structural changes include the quaternary rearrangement even under the constraints of lattice interactions, demonstrating that subunit rotation is an integral component of the ligand-linked structural transition in HbI. Analysis of both crystal forms, along with data from HbI mutants, suggests that the quaternary structural change is linked to the movement of the heme group, supporting a hypothesis that the heme movement is the central event that triggers cooperative ligand binding in this hemoglobin dimer. These results show both the effects of a crystal lattice in limiting quaternary structural transitions and provide the first example of complete allosteric transitions within another crystal lattice.  相似文献   

11.
N V Blough  H Zemel  B M Hoffman 《Biochemistry》1984,23(13):2883-2891
Flash photolysis is employed to investigate the kinetics of CO recombination to the ferrous chains of [Mn(II),Fe(II)] hemoglobin (Hb) hybrids. At low pH (6.6), Hb remains predominantly in the T quaternary state for the first two CO ligation steps, when binding to either the alpha chains or beta chains. At elevated pH, CO binding to the alpha chains produces a larger degree of T to R conversion than binding to the beta chains, in support of earlier equilibrium measurements. This study provides the full pH dependence of the CO binding rate constants for both alpha- and beta-Fe chains within the T state and at elevated values of pH gives the R-state rate constants for the monoliganded analogues. The data can be analyzed within the context of a two-state model for Hb cooperativity, but they give clear evidence for slow quaternary structure interconversion at the monoliganded level.  相似文献   

12.
Oxygen equilibrium curves of the giant hemoglobin from the earthworm Eisenia foetida were determined at various concentrations of cations. Using the Adair model of 12 oxygenation steps, we succeeded in fitting the data better than the simple concerted model (MWC model). Analysis of the Adair constants (K1 to K12) indicated that the increase in oxygen affinity occurs in the last six steps (K7 to K12) of the oxygen binding and that it is enhanced by increase in Ca2+ concentration. The Hill coefficient (nmax) at pH 7.5 attained a maximum value of 9.76 at 20 mM CaCl2. In the presence of physiological levels of Ca2+ (5 mM), the Bohr effect was similar to that seen in vertebrates. The data were consistent with the release of two Bohr protons being accompanied by the oxygen-linked binding of one Ca2+. Mg2+ and Na+ exerted a similar effect on the hemoglobin, though to a lesser extent. The stoichiometry of Ca2+ binding of the hemoglobin revealed the presence of two classes of binding sites, of which the affinities are high (Ka = 8.8 x 10(3) +/- 103 M-1) and low. The number of high affinity sites per heme was found to be 0.3, comparable to the number of oxygen-linked Ca2+ binding sites.  相似文献   

13.
Formation of the binary complex between the reduced coenzyme nicotinamide adenine dinucleotide (NADH) and pig skeletal muscle lactate dehydrogenase (LDH, EC 1.1.1.27) has been investigated by calorimetric and equilibrium dialysis techniques in 0.2 M potassium phosphate buffer (pH 7.0) at various temperatures. Analysis of thermal titration curves at two temperatures (25 and 31.5 degrees) shows that the experimental enthalpy data can be rationalized assuming four independent and equivalent binding sites for the tetrameric enzyme. Binary complex formation is characterized by a negative temperature coefficient, delta cp, of the binding enthalpy, which amounts to -1300 plus or minus 53 cal/(deg mol of LDH) in the temperature range of 5-31.5 degrees. Despite the slightly smaller standard deviation resulting when polynomial regression analysis of the second degree is applied to the temperature dependence of the enthalpy values, binding enthalpies seem to be adequately represented in the temperature range studied by the equation delta H = -1.3T + 2.3, kcal/mol of LDH, T referring to the temperature in degrees C. By combination of the results obtained from equilibrium dialysis and calorimetric studies a set of apparent thermodynamic parameters for binding of NADH to LDH in 0.2 M potassium phosphate buffer at pH 7 has been established.  相似文献   

14.
Through the use of CD and DSC, the thermal unfolding of holo serum retinol binding protein containing a single, tightly bound retinol ligand was studied at pH 7.4. The DSC endotherm of the holoprotein ([retinol]/[protein] = 1) was asymmetric about the transition temperature of 78 degrees C. Using changes in ellipticity at 230 nm, the thermal unfolding curve was also asymmetric about the inflection point centered near 78 degrees C. van't Hoff enthalpies were determined by three means and compared to the calorimetric enthalpy (delta Hcal) of 200 kcal/mol. A van't Hoff enthalpy of 190 kcal/mol was determined from the dependence of transition temperature on the concentration of the ligand-bound protein. This value agreed well with the van't Hoff enthalpies found from fits of the DSC (delta HvH = 184 kcal/mol) and spectroscopic (delta HvH = 181 kcal/mol) curves to a two-state thermodynamic model that included ligand dissociation (NR in equilibrium with U+R, where NR is the native holoprotein, U is the unfolded apoprotein, and R is retinol). Poor agreement was obtained with a two-state model that ignored ligand dissociation (N in equilibrium with U). Furthermore, the NR in equilibrium with U+R model accounted for the asymmetry in both CD and DSC transitions and yielded a much improved fit of the data over the N in equilibrium with U model. From these considerations and simulations on other equilibrium models, it is suggested that the NR in equilibrium with U+R model is the simplest model that describes the thermal unfolding of this ligand-bound protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Dihydroorotase (DHOase, EC 3.5.2.3) from the extreme thermophile Bacillus caldolyticus has been subcloned, sequenced, expressed, and purified as a monomer. The catalytic properties of this thermophilic DHOase have been compared with another type I enzyme, the DHOase domain from hamster, to investigate how the thermophilic enzyme is adapted to higher temperatures. B. caldolyticus DHOase has higher Vmax and Ks values than hamster DHOase at the same temperature. The thermodynamic parameters for the binding of L-dihydroorotate were determined at 25 degrees C for hamster DHOase (deltaG = -6.9 kcal/mol, deltaH = -11.5 kcal/mol, TdeltaS = -4.6 kcal/mol) and B. caldolyticus DHOase (deltaG = -5.6 kcal/mol, deltaH = -4.2 kcal/mol, TdeltaS = +1.4 kcal/mol). The smaller enthalpy release and positive entropy for thermophilic DHOase are indicative of a weakly interacting Michaelis complex. Hamster DHOase has an enthalpy of activation of 12.3 kcal/mol, similar to the release of enthalpy upon substrate binding, rendering the kcat/Ks value almost temperature independent. B. caldolyticus DHOase shows a decrease in the enthalpy of activation from 12.2 kcal/mol at temperatures from 30 to 50 degrees C to 5.3 kcal/mol for temperatures of 50-70 degrees C. Vibrational energy at higher temperatures may facilitate the transition ES --> ES(double dagger), making kcat/Ks almost temperature independent. The pseudo-first-order rate constant for water attack on L-dihydroorotate, based on experiments at elevated temperature, is 3.2 x 10(-11) s(-1) at 25 degrees C, with deltaH(double dagger) = 24.7 kcal/mol and TdeltaS(double dagger) = -6.9 kcal/mol. Thus, hamster DHOase enhances the rate of substrate hydrolysis by a factor of 1.6 x 10(14), achieving this rate enhancement almost entirely by lowering the enthalpy of activation (delta deltaH(double dagger) = -19.5 kcal/mol). Both the rate enhancement and transition state affinity of hamster DHOase increase steeply with decreasing temperature, consistent with the development of H-bonds and electrostatic interactions in the transition state that were not present in the enzyme-substrate complex in the ground state.  相似文献   

16.
17.
We compare various allosteric models that have been proposed to explain cooperative oxygen binding to hemoglobin, including the two-state allosteric model of Monod, Wyman, and Changeux (MWC), the Cooperon model of Brunori, the model of Szabo and Karplus (SK) based on the stereochemical mechanism of Perutz, the generalization of the SK model by Lee and Karplus (SKL), and the Tertiary Two-State (TTS) model of Henry, Bettati, Hofrichter and Eaton. The preponderance of experimental evidence favors the TTS model which postulates an equilibrium between high (r)- and low (t)-affinity tertiary conformations that are present in both the T and R quaternary structures. Cooperative oxygenation in this model arises from the shift of T to R, as in MWC, but with a significant population of both r and t conformations in the liganded T and in the unliganded R quaternary structures. The TTS model may be considered a combination of the SK and SKL models, and these models provide a framework for a structural interpretation of the TTS parameters. The most compelling evidence in favor of the TTS model is the nanosecond - millisecond carbon monoxide (CO) rebinding kinetics in photodissociation experiments on hemoglobin encapsulated in silica gels. The polymeric network of the gel prevents any tertiary or quaternary conformational changes on the sub-second time scale, thereby permitting the subunit conformations prior to CO photodissociation to be determined from their ligand rebinding kinetics. These experiments show that a large fraction of liganded subunits in the T quaternary structure have the same functional conformation as liganded subunits in the R quaternary structure, an experimental finding inconsistent with the MWC, Cooperon, SK, and SKL models, but readily explained by the TTS model as rebinding to r subunits in T. We propose an additional experiment to test another key prediction of the TTS model, namely that a fraction of subunits in the unliganded R quaternary structure has the same functional conformation (t) as unliganded subunits in the T quaternary structure.  相似文献   

18.
The temperature dependence of the oxygen equilibrium of tadpole hemoglobin has been determined between 0 degrees and 32 degrees for the unfractionated but phosphate-free lysate and between 12 degrees and 32 degrees for each of the four isolated components between pH 6 and 10 in 0.05 M cacodylate, Tris, or glycine buffers containing 0.1 M NaCl and 1 mM EDTA. Under these conditions the Bohr effect (defined as deltalog p50/deltapH) of the unfractionated lysate is positive at low temperatures between pH 6 and 8.5 and is negative above pH 8.5 to 8.8 at any temperature. As the temperature rises the Bohr effect below pH 8.5 changes greatly. In the interval pH 7.0 to 7.5, the magnitude of the Bohr effect decreases from + 0.28 at 0 degrees to zero at about 24 degrees and becomes negative, as in mammalian hemoglobins, above this temperature. Measurements with the isolated components show that the temperature dependence of oxygen binding for Components I and II and for Components III and IV is very similar. For both sets of components the apparent overall enthalpy of oxygenation at pH 7.5 is about -16.4 kcal/mol and -12.6 kcal/mol at pH 9.5. The measured enthalpies include contributions from the active Bohr groups, the buffer ions themselves, the hemoglobin groups contributing buffering, and any pH-dependent, oxygenation-dependent binding of ions such as chloride by the hemoglobin. The apportioning of the total enthalpy among these various processes remains to be determined. Between pH 8 and 10.5 tadpole oxyhemoglobin undergoes a pH-dependent dissociation from tetramer to dimer. The pH dependence of the apparent tetramer-dimer dissociation constant indicates that at pH 9.5 the dissociation of each tetramer is accompanied by the release of approximately 2 protons. In this pH range the oxygen equilibrium measurements indicate that about 0.5 proton is released for each oxygen molecule bound. The results are consistent with the conclusion that one acid group per alphabeta dimer changes its pK from about 10 to 8 or below upon dissociation of the tetramer.  相似文献   

19.
The energetic changes that occur on ligand binding in human hemoglobin have been investigated by measurements of the exchange rates of the indole proton of Trpbeta37(C3). The Trpbeta37 residues are located in helices C of the beta-subunits and are involved in contacts with the segments FG of the alpha-subunits at the interdimeric alpha1beta2 and alpha2beta1 interfaces of the hemoglobin tetramer. In the quaternary structure change that accompanies ligand binding to hemoglobin, these contacts undergo minimal changes in relative orientation and in packing, thereby acting as hinges, or flexible joints. The exchange rates of the indole proton of Trpbeta37(C3) were measured by nuclear magnetic resonance spectroscopy, in both deoxygenated and ligated hemoglobin. The results indicate that, at 15 degrees C, the exchange rate is increased from 9.0. 10(-6) to 3.3. 10(-4) s(-1) upon ligand binding to hemoglobin. This change suggests that the structural units at the hinge regions of the alpha1beta2/alpha2beta1 interfaces containing Trpbeta37(C3) are specifically stabilized in unligated hemoglobin, and experience a change in structural free energy of approximately 4 kcal/(mol tetramer) upon ligand binding. Therefore, the hinge regions of the alpha1beta2/alpha2beta1 interfaces could play a role in the transmission of free energy through the hemoglobin molecule during its allosteric transition.  相似文献   

20.
Significant reduction in oxygen affinity resulting from interactions between heterotropic allosteric effectors and hemoglobin in not only the unligated derivative but also the fully ligated form has been reported (Tsuneshige, A., Park, S. I., and Yonetani, T. (2002) Biophys. Chem. 98, 49-63; Yonetani, T., Park, S. I., Tsuneshige, A., Imai, K., and Kanaori, K. (2002) J. Biol. Chem. 277, 34508-34520). To further investigate this effect in more detail, alpha- and beta-semihemoglobins, namely, alpha(heme)beta(apo) and alpha(apo)beta(heme), respectively, were prepared and characterized with respect to the impact of allosteric effectors on both conformation and ligand binding properties. Semihemoglobins are dimers characterized by a high affinity for oxygen and lack of cooperativity. We found that, compared with stripped conditions, semihemoglobins responded to effectors (inositol hexaphosphate and L35) by decreasing the affinity for oxygen by 60- and 130-fold for alpha- and beta-semihemoglobins, respectively. 1H NMR and sedimentation velocity experiments carried out with their ligated and unligated forms in the absence and presence of effectors revealed that semihemoglobins always remain as single-heme-carrying dimers. Recombination kinetics of their photolyzed CO derivatives showed that effectors did indeed interact with their ligated forms. Measurements of the Fe-His stretching mode show that the semihemoglobins undergo a large ligand binding-induced conformational shift and that both ligand-free and ligand derivatives respond to the presence of effectors. Contradictions to the Monod-Wyman-Changeaux/Perutz allosteric model arise since 1) the modulation of ligand affinity is not achieved in semihemoglobins by the formation of a low affinity T conformation (quaternary effect) but by direct interaction with effectors, 2) effectors do interact significantly with ligated forms of high affinity semihemoglobins, and 3) modulation of the ligand affinity and the cooperativity are not necessarily linked but instead can be separated into two distinct phenomena that can be isolated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号