首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Five Arabidopsis thaliana genes that encode UDP-glucose 4-epimerase (UGE) and represent two ancient plant UGE clades might be involved in the regulation of cell wall carbohydrate biosynthesis. We tested this hypothesis in a genome-wide reverse genetic study. Despite significant contributions of each gene to total UGE activity, none was essential for normal growth on soil. uge2 uge4 displayed dramatic general growth defects, while other mutant combinations were partially aberrant. UGE2 together with UGE3 influenced pollen development. UGE2 and UGE4 synergistically influenced cell wall galactose content, which was correlated with shoot growth. UGE2 strongly and UGE1 and UGE5 lightly supported UGE4 in influencing root growth and cell wall galactose content by affecting galactan content. By contrast, only UGE4 influenced xyloglucan galactosylation in roots. Secondary hypocotyl thickening and arabinogalactan protein carbohydrate structure in xylem parenchyma depended on the combination of UGE2 and UGE4. As opposed to cell wall galactose content, tolerance to external galactose strictly paralleled total UGE activity. We suggest a gradual recruitment of individual UGE isoforms into specific roles. UGE2 and UGE4 influence growth and cell wall carbohydrate biosynthesis throughout the plant, UGE3 is specialized for pollen development, and UGE1 and UGE5 might act in stress situations.  相似文献   

2.
The biosynthesis of plant cell wall polysaccharides requires the concerted action of nucleotide sugar interconversion enzymes, nucleotide sugar transporters, and glycosyl transferases. How cell wall synthesis in planta is regulated, however, remains unclear. The root epidermal bulger 1 (reb1) mutant in Arabidopsis thaliana is partially deficient in cell wall arabinogalactan-protein (AGP), indicating a role for REB1 in AGP biosynthesis. We show that REB1 is allelic to ROOT HAIR DEFICIENT 1 (RHD1), one of five ubiquitously expressed genes that encode isoforms of UDP-D-glucose 4-epimerase (UGE), an enzyme that acts in the formation of UDP-D-galactose (UDP-D-Gal). The RHD1 isoform is specifically required for the galactosylation of xyloglucan (XG) and type II arabinogalactan (AGII) but is not involved either in D-galactose detoxification or in galactolipid biosynthesis. Epidermal cell walls in the root expansion zone lack arabinosylated (1-->6)-beta-D-galactan and galactosylated XG. In cortical cells of rhd1, galactosylated XG is absent, but an arabinosylated (1-->6)-beta-D-galactan is present. We conclude that the flux of galactose from UDP-D-Gal into different downstream products is compartmentalized at the level of cytosolic UGE isoforms. This suggests that substrate channeling plays a role in the regulation of plant cell wall biosynthesis.  相似文献   

3.
A small number of plant growth regulators are involved in the control of cell expansion. Despite knowledge of some of their signal transduction cascades, surprisingly little is known of how basic cell expansion-related processes, such as cell wall biosynthesis, are affected during growth. The Arabidopsis (Arabidopsis thaliana) mutant root hair defective1 (rhd1) lacks a functional UDP-glucose 4-epimerase gene, UGE4, which is involved in channeling UDP-D-galactose (UDP-D-Gal) into cell wall polymers. Here, we use rhd1 as a genetic model to analyze the physiological and genetic controls of nucleotide sugar flux. We find that ethylene specifically suppresses all visible aspects of the rhd1 phenotype. The ethylene-triggered suppression of rhd1 is negatively regulated by CONSTITUTIVE TRIPLE RESPONSE1 and requires the function of the wild-type genes ETHYLENE INSENSITIVE2 (EIN2), EIN4, AUXIN-RESISTENT1, and ETHYLENE-INSENSITIVE ROOT1 but does not depend on the activity of wild-type ETHYLENE RECEPTOR1 or EIN3 genes, highlighting the nonlinearity of ethylene signal transduction. Ethylene does not induce the expression of alternative UGE genes but, instead, suppresses the expression of two isoforms, UGE1 and UGE3, in a tissue-specific manner. Ethylene restores the biosynthesis of galactose-containing xyloglucan and arabinosylated galactan cell wall polymers in rhd1 back to wild-type levels. However, the dependence on UGE4 of pectic (1-->4)-beta-D-galactan and glucuronosyl-modified AGP biosynthesis is exacerbated. Our data suggest that ethylene and auxin together participate in the flux control of UDP-D-Gal into cell wall polymers and that the genetic control of this process is qualitatively distinct from previously described responses to ethylene.  相似文献   

4.
Mammalian alpha-L-fucosidases.   总被引:2,自引:0,他引:2  
Mammalian alpha-L-fucosidases are a ubiquitous group of relatively large multimeric lysosomal glycosidases involved in the degradation of a diverse group of naturally-occurring fucoglycoconjugates. These enzymes are closely related structurally as indicated by immunochemical cross-reactivity and cloning studies. Mammalian fucosidases are sialoglycoproteins and the carbohydrate, particularly sialic acid, contributes to producing multiple isoforms which can differ in various species as well as in different tissues within a given species. alpha-L-Fucosidases exhibit maximal activity at pH values between 4 and 7, have similar kinetic properties with synthetic substrates (PNP-fucoside and 4-MU-fucoside), and exhibit broad substrate specificity on natural substrates. Numerous linkages (alpha 1-2, alpha 1-3, alpha 1-4, alpha 1-6), primarily to galactose and N-acetylglucosamine, can be hydrolyzed but preference is often seen for small mol. wt water-soluble substrates with fucose in alpha 1-2 linkage to galactose. The importance of alpha-L-fucosidase in mammalian metabolism is evidenced by deficiency or absence of its enzymatic activity leading to a fatal genetic disease, at least in humans and English Springer Spaniels.  相似文献   

5.
1. Crude enzyme preparations from Hymenolepis diminuta contained galactokinase, galactose 1-phosphate uridyl transferase and UDPgalactose 4-epimerase activity, although their specific activities were low. 2. Galactose 1-phosphate non-competitively inhibited galactose phosphorylation. This inhibition, together with the low specific activities of the enzymes in the pathway of galactose utilization, probably accounts for the inadequacy of galactose as a main nutritive carbohydrate for development of the worm.  相似文献   

6.
7.
UDPgalactose 4-epimerase (epimerase) catalyzes the reversible conversion between UDPgalactose and UDPglucose and is an important enzyme of the galactose metabolic pathway. The Saccharomyces cerevisiae epimerase encoded by the GAL10 gene is about twice the size of either the bacterial or human protein. Sequence analysis indicates that the yeast epimerase has an N-terminal domain (residues 1-377) that shows significant similarity with Escherichia coli and human UDPgalactose 4-epimerase, and a C-terminal domain (residues 378-699), which shows extensive identity to either the bacterial or human aldose 1-epimerase (mutarotase). The S. cerevisiae epimerase was purified to > 95% homogeneity by sequential chromatography on DEAE-Sephacel and Resource-Q columns. Purified epimerase preparations showed mutarotase activity and could convert either alpha-d-glucose or alpha-d-galactose to their beta-anomers. Induction of cells with galactose led to simultaneous enhancement of both epimerase and mutarotase activities. Size exclusion chromatography experiments confirmed that the mutarotase activity is an intrinsic property of the yeast epimerase and not due to a copurifying endogenous mutarotase. When the purified protein was treated with 5'-UMP and l-arabinose, epimerase activity was completely lost but the mutarotase activity remained unaffected. These results demonstrate that the S. cerevisiae UDPgalactose 4-epimerase is a bifunctional enzyme with aldose 1-epimerase activity. The active sites for these two enzymatic activities are located in different regions of the epimerase holoenzyme.  相似文献   

8.
Dictyostelium discoideum is able to metabolize [1-14C]galactose to 14CO2 despite the observation that galactose is inhibitory with respect to growth. Galactose-1-phosphate uridyl transferase activity is present throughout growth and development and varies in activity only slightly during the entire life cycle of D. discoideum, in contrast to the rapid increase in UDP-glucose 4-epimerase activity during development. Therefore, in D. discoideum, these two enzymes of the Leloir pathway are independently regulated, unlike E. coli where these enzymes are coordinately controlled.  相似文献   

9.
The monomer composition of the exopolysaccharides (EPS) produced by Streptococcus thermophilus LY03 and S. thermophilus Sfi20 were evaluated by high-pressure liquid chromatography with amperometric detection and nuclear magnetic resonance spectroscopy. Both strains produced the same EPS composed of galactose, glucose, and N-acetylgalactosamine. Further, it was demonstrated that the activity of the precursor-producing enzyme UDP-N-acetylglucosamine 4-epimerase, converting UDP-N-acetylglucosamine into UDP-N-acetylgalactosamine, is responsible for the presence of N-acetylgalactosamine in the EPS repeating units of both strains. The activity of UDP-N-acetylglucosamine 4-epimerase was higher in both S. thermophilus strains than in a non-EPS-producing control strain. However, the level of this activity was not correlated with EPS yields, a result independent of the carbohydrate source applied in the fermentation process. On the other hand, both the amounts of EPS and the carbohydrate consumption rates were influenced by the type of carbohydrate source used during S. thermophilus Sfi20 fermentations. A correlation between activities of the enzymes alpha-phosphoglucomutase, UDP-glucose pyrophosphorylase, and UDP-galactose 4-epimerase and EPS yields was seen. These experiments confirm earlier observed results for S. thermophilus LY03, although S. thermophilus Sfi20 preferentially consumed glucose for EPS production instead of lactose in contrast to the former strain.  相似文献   

10.
UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase (UDP-GlcNAc 2-epimerase) is the key enzyme in the de novo synthesis pathway of neuraminic acid, which is widely expressed as a terminal carbohydrate residue on glycoconjugates. UDP-GlcNAc 2-epimerase is a bifunctional enzyme and catalyzes the first two steps of neuraminic acid synthesis in the cytosol, the conversion of UDP-N-acetylglucosamine to ManAc and the phosphorylation to ManAc-6-phosphate. So far, regulation of this essential enzyme by posttranslational modification has not been shown. Since UDP-N-acetylglucosamine is a cytosolic protein containing eight conserved motifs for protein kinase C (PKC), we investigated whether its enzymatic activity might be regulated by phosphorylation by PKC. We showed that UDP-GlcNAc 2-epimerase interacts with several isoforms of PKC in mouse liver and is phosphorylated in vivo. Furthermore, PKC phosphorylates UDP-GlcNAc 2-epimerase and this phosphorylation results in an upregulation of the UDP-GlcNAc 2-epimerase enzyme activity.  相似文献   

11.
To better understand the pathophysiology of galactose-1-phosphate uridyltransferase (GALT) deficiency in humans, we studied the mechanisms by which a GALT-deficient yeast survived on galactose medium. Under normal conditions, GALT-deficient yeast cannot grow in medium that contains 0.2% galactose as the sole carbohydrate, a phenotype of Gal(-). We isolated revertants from a GALT-deficient yeast by direct selection for growth in galactose, a phenotype of Gal(+). Comparison of gene expression profiles among wild-type and revertant strains on galactose medium revealed that the revertant down-regulated genes encoding enzymes including galactokinase, galactose permease, and UDP-galactose-4-epimerase (the GAL regulon). By contrast, the revertant strain up-regulated the gene for UDP-glucose pyrophosphorylase, UGP1. There was reduced accumulation of galactose-1-phosphate in the galactose-grown revertant cells when compared to the GALT-deficient parent cells. In vitro biochemical analysis showed that UDP-glucose pyrophosphorylase had bifunctional properties and could catalyze the conversion of galactose-1-phosphate to UDP-galactose in the presence of UTP. To test if augmented expression of this gene could produce a Gal(+) phenotype in the GALT-deficient parent cells, we overexpressed the yeast UGP1 and the human homolog, hUGP2 in the mutant strain. The Gal(-) yeast transformed with either UGP1 or hUGP2 regained their ability to grow on galactose. We conclude that revertant can grow on galactose medium by reducing the accumulation of toxic precursors through down-regulation of the GAL regulon and up-regulation of the UGP1 gene. We speculate that increased expression of hUGP2 in humans could alleviate poor outcomes in humans with classic galactosemia.  相似文献   

12.
任鄄宝  邹根  张忠  陈万超  吴迪  张赫男  龚明  杨焱 《菌物学报》2021,40(9):2330-2340
通过实验室前期对诱变菌株猴头菌321的多组学分析结果,获得了一个多糖合成过程中起关键作用的UDP-葡萄糖-4-差向异构酶基因(UDP-glucose-4-epimerase,UGE),并在大肠杆菌E. coli BL21(DE3)中进行了异源表达。通过筛选最优的目的蛋白诱导表达条件后,通过镍柱亲和层析纯化后获得高纯度目的蛋白,并对目的蛋白进行了酶学性质的研究,明确了其生物学性质和动力学参数,为其开发利用提供理论参考。  相似文献   

13.
It was established earlier that the maintenance of rats on a galactose-rich diet induced in rat liver a sequental induction of enzymes, converting galactose to glucose (galactokinase, galactoso-1-phosphaturidytransferase and uridyndiphosphogalactose-4-epimerase); this was followed by the repression of these enzymes. Against the background of the enzyme repression, the continuation of galactose treatment leads to the development of galactosemia symptoms; cataracts, liver lesions growth retardation. Animals with the increased susceptibility to galactose were found in population of Wistar rats; in these animals rapidly developing enzyme induction is followed by sharp repression of enzymes of the galactose metabolism and in them cataracts appear 17-19 days after the start of feeding a galactose-rich diet. A part of the population is resistant to the galactosemic effect of galactose and in these animals cataracts develope only 40-44 days after the beginning of the galactose feeding. By inbreeding of individuals extremely susceptible to galactose and those resistant to it, new substrains of rats were obtained. It is found that in the rats of the galactose-susceptible substrain a number of galactosemic features develope spontaneously and that these features are inheritable. Thus, 85% of the animals of the age of 2.5-6 months have cataract, lens opacities and other lens impairments. In the galactose-resistant substrain no cataracts or lens opacities develope and only slight changes of the lens are observed in 15% of the animals. In the susceptible substrain other features characteristic of galactosemia occur: an increase in the size of thymus, spleen and liver. It is established that in 3.5-5 month old rats of the galactose-susceptible substrain the galactoso-1 phosphaturidyltransferase activity in blood hemolysates is 15 times lower than in rats of galactose-resistant substrain, and in liver the activity of this enzyme is 1.4 times lower. The activity of liver galactokinase and uridyldiphosphogalactose-4-epimerase is slightly higher in rats of galactose-susceptible substrain than in galactose-resistant 1.  相似文献   

14.
The activities of galactokinase, hexose-1-phosphate uridylyl transferase and UDPglucose 4-epimerase in homogenates of livers of two adult and 20 suckling tammar wallabies aged from 6 to 50 weeks were investigated. The activities of all three enzymes were high until 24-30 weeks post partum, after which they declined to low levels. The activities of the three liver enzymes were high in pouch young of six other species of marsupial. Comparison of the activities of the three liver enzymes in suckling tammar wallabies with those in suckling rats showed no difference between the two species in regard to galactokinase and uridylyl transferase, but the UDPglucose 4-epimerase activity in tammar wallabies was approximately double than found in rats. This may be related to the high galactose content of tammar wallaby milk compared with rat milk. In suckling tammar wallabies, the liver had higher enzyme activities than other tissues studied. It is concluded that, contrary to the suggestion of Stephens et al. (1975), pouch young marsupials are not deficient in their ability to metabolize galactose.  相似文献   

15.
UDP-L-rhamnose is required for the biosynthesis of cell wall rhamnogalacturonan-I, rhamnogalacturonan-II, and natural compounds in plants. It has been suggested that the RHM2/MUM4 gene is involved in conversion of UDP-D-glucose to UDP-L-rhamnose on the basis of its effect on rhamnogalacturonan-I-directed development in Arabidopsis thaliana. RHM2/MUM4-related genes, RHM1 and RHM3, can be found in the A. thaliana genome. Here we present direct evidence that all three RHM proteins have UDP-D-glucose 4,6-dehydratase, UDP-4-keto-6-deoxy-D-glucose 3,5-epimerase, and UDP-4-keto-L-rhamnose 4-keto-reductase activities in the cytoplasm when expressed in the yeast Saccharomyces cerevisiae. Functional domain analysis revealed that the N-terminal region of RHM2 (RHM2-N; amino acids 1-370) has the first activity and the C-terminal region of RHM2 (RHM2-C; amino acids 371-667) has the two following activities. This suggests that RHM2 converts UDP-d-glucose to UDP-L-rhamnose via an UDP-4-keto-6-deoxy-D-glucose intermediate. Site-directed mutagenesis of RHM2 revealed that mucilage defects in MUM4-1 and MUM4-2 mutant seeds of A. thaliana are caused by abolishment of RHM2 enzymatic activity in the mutant strains and furthermore, that the GXXGXX(G/A) and YXXXK motifs are important for enzymatic activity. Moreover, a kinetic analysis of purified His(6)-tagged RHM2-N protein revealed 5.9-fold higher affinity of RHM2 for UDP-D-glucose than for dTDP-D-glucose, the preferred substrate for dTDP-D-glucose 4,6-dehydratase from bacteria. RHM2-N activity is strongly inhibited by UDP-L-rhamnose, UDP-D-xylose, and UDP but not by other sugar nucleotides, suggesting that RHM2 maintains cytoplasmic levels of UDP-D-glucose and UDP-L-rhamnose via feedback inhibition by UDP-L-rhamnose and UDP-D-xylose.  相似文献   

16.
17.
Apolipoprotein H is a single chain polypeptide composed of 326 amino acids highly glycosylated. Its carbohydrate content is approximately 19% of the molecular weight. We show that it is rich in sialic acid linked alpha (2-6) to galactose or N-acetylgalactosamine. Sialic acid is not alpha (2-3) linked to galactose. Galactose is beta (1-4) linked to N-acetylglucosamine and beta (1-3) linked to N-acetylgalactosamine. Carbohydrate O-linked chains (mainly sialic acid) are alpha (2-6) linked to galactose or N-acetylgalactosamine. Galactose is also organised in O-linked chains and beta (1-4) linked to N-acetylglucosamine and beta (1-3) linked to acetylgalactosamine. Concanavalin A lectin was used to isolate two groups of apolipoprotein H molecules bearing biantennary and truncated hybrids and high mannose and hybrid oligosaccharides. Apolipoprotein H fails to bind lysine-Sepharose. Our results thus show that it presents truncated hybrid or hybrid-type carbohydrate chains which bear few unmasked mannose residues as a terminal sugar. Biochemical analysis of carbohydrate structures conducted on single isoforms separated through IEF revealed that no specific carbohydrate complex is bound to a single isoform.  相似文献   

18.
UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) catalyzes the first two committed steps in sialic acid synthesis. In addition to the three previously described human GNE isoforms (hGNE1-hGNE3), our database and polymerase chain reaction analysis yielded five additional human isoforms (hGNE4-hGNE8). hGNE1 is the ubiquitously expressed major isoform, while the hGNE2-hGNE8 isoforms are differentially expressed and may act as tissue-specific regulators of sialylation. hGNE2 and hGNE7 display a 31-residue N-terminal extension compared to hGNE1. On the basis of similarities to kinases and helicases, this extension does not seem to hinder the epimerase enzymatic active site. hGNE3 and hGNE8 contain a 55-residue N-terminal deletion and a 50-residue N-terminal extension compared to hGNE1. The size and secondary structures of these fragments are similar, and modeling predicted that these modifications do not affect the overall fold compared to that of hGNE1. However, the epimerase enzymatic activity of GNE3 and GNE8 is likely absent, because the deleted fragment contains important substrate binding residues in homologous bacterial epimerases. hGNE5-hGNE8 have a 53-residue deletion, which was assigned a role in substrate (UDP-GlcNAc) binding. Deletion of this fragment likely eliminates epimerase enzymatic activity. Our findings imply that GNE is subject to evolutionary mechanisms to improve cellular functions, without increasing the number of genes. Our expression and modeling data contribute to elucidation of the complex functional and regulatory mechanisms of human GNE and may contribute to further elucidating the pathology and treatment strategies of the human GNE-opathies sialuria and hereditary inclusion body myopathy.  相似文献   

19.
UDP glucose 4-epimerase (UGE), an enzyme with significant impacts on sugar metabolism, catalyzes the reversible inter-conversion between UDP-glucose and UDP-galactose. However, very little is known about whether UGE plays a critical role in the accumulation of water-soluble polysaccharide (WSP) and its relationship to abiotic stress tolerance. Here, DoUGE from D. officinale, encoding UGE localized in the cytoplasm, was initially cloned and analyzed. DoUGE exhibited highly tissue-specific expression patterns. The highest expression was in the stems of seedlings and adult plants. The content of WSPs ranged from 168.43 to 416.12 mg g?1 DW from developmental stages S1 to S4, the highest value being in S3. DoUGE was expressed throughout S1 to S4, with a maximum in S3. This trend was similar in three cultivated varieties (T10, T32-5 and T636). There was a positive correlation between DoUGE expression and the content of WSPs (R 2 ?=?0.94; p?<?0.01). Furthermore, promoter analysis showed its possible role in responses to abiotic stresses. Transgenic Arabidopsis thaliana seedlings overexpressing DoUGE accumulated 34.84–44.78% more WSPs, showed 26.24–32.79% more UGE activity, and had a 1.19–1.31-fold higher chlorophyll content than the wild type. Transgenic plants also showed a 50.84 and 34.33% increase in the average content of glucose and galactose, respectively. Transgenic lines growing in half-strength Murashige and Skoog medium containing 150 mM NaCl or 200 mM mannitol displayed enhanced root length and fresh weight, as well as lower proline and malondialdehyde accumulation under salt and osmotic stresses, indicating that the DoUGE gene could be used to improve tolerance to abiotic stress in crops and medicinal or ornamental plants. Our results provide genetic evidence for the involvement of DoUGE in the regulation of WSP content during plant development in D. officinale, as well as in enhanced tolerance to salt and osmotic stresses.  相似文献   

20.
The monomer composition of the exopolysaccharides (EPS) produced by Streptococcus thermophilus LY03 and S. thermophilus Sfi20 were evaluated by high-pressure liquid chromatography with amperometric detection and nuclear magnetic resonance spectroscopy. Both strains produced the same EPS composed of galactose, glucose, and N-acetylgalactosamine. Further, it was demonstrated that the activity of the precursor-producing enzyme UDP-N-acetylglucosamine 4-epimerase, converting UDP-N-acetylglucosamine into UDP-N-acetylgalactosamine, is responsible for the presence of N-acetylgalactosamine in the EPS repeating units of both strains. The activity of UDP-N-acetylglucosamine 4-epimerase was higher in both S. thermophilus strains than in a non-EPS-producing control strain. However, the level of this activity was not correlated with EPS yields, a result independent of the carbohydrate source applied in the fermentation process. On the other hand, both the amounts of EPS and the carbohydrate consumption rates were influenced by the type of carbohydrate source used during S. thermophilus Sfi20 fermentations. A correlation between activities of the enzymes α-phosphoglucomutase, UDP-glucose pyrophosphorylase, and UDP-galactose 4-epimerase and EPS yields was seen. These experiments confirm earlier observed results for S. thermophilus LY03, although S. thermophilus Sfi20 preferentially consumed glucose for EPS production instead of lactose in contrast to the former strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号