共查询到20条相似文献,搜索用时 0 毫秒
1.
Arsenite stimulated glucose transport in 3T3-L1 adipocytes involves both Glut4 translocation and p38 MAPK activity. 总被引:2,自引:0,他引:2
Merlijn Bazuine D Margriet Ouwens Daan S Gomes de Mesquita J Antonie Maassen 《European journal of biochemistry》2003,270(19):3891-3903
The protein-modifying agent arsenite stimulates glucose uptake in 3T3-L1 adipocytes. In the current study we have analysed the signalling pathways that contribute to this response. By subcellular fractionation we observed that arsenite, like insulin, induces translocation of the GLUT1 and GLUT4 glucose transporters from the low-density membrane fraction to the plasma membrane. Arsenite did not activate early steps of the insulin receptor (IR)-signalling pathway and the response was insensitive to inhibition of phosphatidylinositol-3'-kinase (PI-3') kinase by wortmannin. These findings indicate that the 'classical' IR-IR substrate-PI-3' kinase pathway, that is essential for insulin-induced GLUT4 translocation, is not activated by arsenite. However, arsenite-treatment did induce tyrosine-phosphorylation of c-Cbl. Furthermore, treatment of the cells with the tyrosine kinase inhibitor, tyrphostin A25, abolished arsenite-induced glucose uptake, suggesting that the induction of a tyrosine kinase by arsenite is essential for glucose uptake. Both arsenite and insulin-induced glucose uptake were inhibited partially by the p38 MAP kinase inhibitor, SB203580. This compound had no effect on the magnitude of translocation of glucose transporters indicating that the level of glucose transport is determined by additional factors. Arsenite- and insulin-induced glucose uptake responded in a remarkably similar dose-dependent fashion to a range of pharmacological- and peptide-inhibitors for atypical PKC-lambda, a downstream target of PI-3' kinase signalling in insulin-induced glucose uptake. These data show that in 3T3-L1 adipocytes both arsenite- and insulin-induced signalling pathways project towards a similar cellular response, namely GLUT1 and GLUT4 translocation and glucose uptake. This response to arsenite is not functionally linked to early steps of the IR-IRS-PI-3' kinase pathway, but does coincide with c-Cbl phosphorylation, basal levels of PKC-lambda activity and p38 MAPK activation. 相似文献
2.
Juan CC Chang CL Lai YH Ho LT 《American journal of physiology. Endocrinology and metabolism》2005,288(6):E1146-E1152
Endothelin-1 (ET-1) affects glucose uptake in adipocytes and may play an important role in adipose physiology. One of the principal functions of adipose tissue is the provision of energy substrate through lipolysis. In the present study, we investigated the effects of ET-1 on lipolysis in 3T3-L1 adipocytes. When glycerol release in the culture medium was measured as an index of lipolysis, the results showed that ET-1 caused a significant increase that was time and dose dependent. With a concentration of 10 nM ET-1, stimulation of glycerol release plateaued after 4 h of exposure. This effect was inhibited by the ETA receptor antagonist BQ-610 (10 microM) but not by the ETB receptor antagonist BQ-788 (10 microM). To further explore the underlying mechanisms of ET-1 action, we examined the involvement of the cAMP-dependent protein kinase A-mediated, phospholipase A2 (PLA2)-mediated, protein kinase C (PKC)-mediated, phosphatidylinositol 3 (PI 3)-kinase-mediated, and the mitogen-activated protein kinase (MAPK)-mediated pathways. Inhibition of adenylyl cyclase activation by SQ-22536 (100 microM) did not block ET-1-induced lipolysis. Pretreatment of adipocytes with the PLA2 inhibitor dexamethasone (100 nM), the PKC inhibitor H-7 (6 microM), or the PI 3-kinase inhibitor wortmannin (100 nM) also had no effect. ET-1-induced lipolysis was blocked by inhibition of extracellular signal-regulated kinase (ERK) activation using PD-98059 (75 microM), whereas a p38 MAPK inhibitor (SB-203580; 20 microM) had no effect. Results of Western blot further demonstrated that ET-1 induced ERK phosphorylation. These data show that ET-1 induces lipolysis in 3T3-L1 adipocytes via a pathway that is different from the conventional cAMP-dependent pathway used by isoproterenol and that involves ERK activation. 相似文献
3.
Endothelin-1 inhibits resistin secretion in 3T3-L1 adipocytes 总被引:7,自引:0,他引:7
Zhong Q Lin CY Clarke KJ Kemppainen RJ Schwartz DD Judd RL 《Biochemical and biophysical research communications》2002,296(2):383-387
Resistin is an adipocyte-derived hormone whose role in the development of insulin resistance is controversial. Endothelin-1 (ET-1) is a 21 amino acid peptide demonstrated to possess vasoconstrictor, positive inotropic, mitogenic, and metabolic properties. In numerous disease states, including congestive heart failure, obesity, and diabetes, elevated levels of ET-1 have been reported and are thought to contribute to the pathology of the disease. A recent study demonstrated that ET-1 induces the expression and stimulates the secretion of the adipose tissue-derived hormone leptin. However, the effect of ET-1 on resistin secretion has not been determined. To characterize the effect of ET-1 on resistin secretion, 3T3-L1 fibroblasts were differentiated into adipocytes and allowed to mature for 14 days. Cells were incubated for 24h with ET-1 (1-100 nM), insulin (1-100 nM), insulin+ET-1 (100 nM I+E) or the appropriate vehicle or antagonist. At the end of the incubation period, resistin secretion was determined in the media by immunoblotting and densitometric analysis. ET-1 (1-100 nM) significantly decreased basal resistin secretion by 49% (1 nM), 43% (10nM), and 59% (100 nM). Insulin (1-100 nM) produced a concentration-dependent increase in resistin secretion from 3T3-L1 adipocytes (1 nM-42%, 10nM-55%, and 100 nM-86% vs. control). Insulin-stimulated resistin secretion (100 nM) was almost completely inhibited (94%) by ET-1 (100 nM). The effects of ET-1 on resistin protein secretion were inhibited by co-incubation with the ET(A) receptor antagonist BQ-610. In conclusion, our studies demonstrate that basal and hormonal stimulation of resistin secretion by insulin are inhibited by ET-1. Such findings demonstrate that resistin secretion is regulated in a similar manner to other adipose tissue factors, including leptin, in 3T3-L1 adipocytes. In addition, our findings suggest that vascular factors such as ET-1 may regulate whole body energy metabolism through adipocyte-derived hormones, including leptin and resistin. 相似文献
4.
Perera HK Clarke M Morris NJ Hong W Chamberlain LH Gould GW 《Molecular biology of the cell》2003,14(7):2946-2958
Insulin stimulates the movement of glucose transporter-4 (Glut4)-containing vesicles to the plasma membrane of adipose cells. We investigated the role of post-Golgi t-soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) in the trafficking of Glut4 in 3T3-L1 adipocytes. Greater than 85% of syntaxin 6 was found in Glut4-containing vesicles, and this t-SNARE exhibited insulin-stimulated movement to the plasma membrane. In contrast, the colocalization of Glut4 with syntaxin 7, 8, or 12/13 was limited and these molecules did not translocate to the plasma membrane. We used adenovirus to overexpress the cytosolic domain of these syntaxin's and studied their effects on Glut4 traffic. Overexpression of the cytosolic domain of syntaxin 6 did not affect insulin-stimulated glucose transport, but increased basal deGlc transport and cell surface Glut4 levels. Moreover, the syntaxin 6 cytosolic domain significantly reduced the rate of Glut4 reinternalization after insulin withdrawal and perturbed subendosomal Glut4 sorting; the corresponding domains of syntaxins 8 and 12 were without effect. Our data suggest that syntaxin 6 is involved in a membrane-trafficking step that sequesters Glut4 away from traffic destined for the plasma membrane. We speculate that this is at the level of traffic of Glut4 into its unique storage compartment and that syntaxin 16 may be involved. 相似文献
5.
6.
Glut4 storage vesicles (GSVs) represent translocation-competent vesicular carriers in fat and skeletal muscle cells that deliver Glut4 to the plasma membrane in response to insulin stimulation. GSVs include three major cargo proteins: Glut4, insulin-responsive aminopeptidase (IRAP), and sortilin. Previous work has suggested that the lumenal interaction between Glut4 and sortilin and the cytoplasmic interaction between sortilin and GGA adaptors play an important role in recruitment of Glut4 into the GSVs. However, the mechanism of IRAP targeting to this compartment remains unknown. To address this question, we show that in differentiating adipocytes IRAP enters the GSVs from the "donor" membranes on day 3 of differentiation. Forced expression of sortilin in undifferentiated cells does not recruit IRAP into the vesicles. However, double expression of sortilin and Glut4 reconstitutes functional GSVs that incorporate endogenous IRAP. To explain this process, we show by a yeast two-hybrid system and chemical cross-linking that the lumenal domain of IRAP can interact with the lumenal loop of Glut4. IRAP without the lumenal domain is faithfully targeted to the donor membranes but has significantly lower insulin responsiveness than full-length IRAP. We suggest that lumenal interactions between Glut4 and IRAP play an important role in the assembly of the GSVs. 相似文献
7.
Bradley RL Mansfield JP Maratos-Flier E Cheatham B 《American journal of physiology. Endocrinology and metabolism》2002,283(3):E584-E592
Energy homeostasis is regulated by peripheral signals, such as leptin, and by several orexigenic and anorectic neuropeptides. Recently, we reported that the orexigenic neuropeptide melanin-concentrating hormone (MCH) stimulates leptin production by rat adipocytes and that the MCH receptor (MCH-R1) is present on these cells. Here, we show that MCH-R1 is present on murine 3T3-L1 adipocytes. Treatment of 3T3-L1 adipocytes with 1 micromolar MCH for up to 2 h acutely downregulated MCH-R1, indicating a mechanism of ligand-induced receptor downregulation. Potential signaling pathways mediating MCH-R1 action in adipocytes were investigated. Treatment of 3T3-L1 adipocytes with 1 micromolar MCH rapidly induced a threefold and a fivefold increase in p44/42 MAPK and pp70 S6 kinase activities, respectively. In addition, 3T3-L1 adipocytes transiently transfected with a murine leptin-luciferase promoter construct showed a fourfold and a sixfold increase in leptin promoter-reporter gene expression at 1 h and 4 h, respectively, in response to MCH. Activity decreased to basal levels at 8 h. Furthermore, MCH-stimulated leptin promoter-driven luciferase activity was diminished in the presence of the MAP/ERK kinase inhibitor PD-98059 and in the presence of rapamycin, an inhibitor of pp70 S6 kinase activation. These results provide further evidence for a functional MCH signaling pathway in adipocytes. 相似文献
8.
9.
Evidence for a role of the exocyst in insulin-stimulated Glut4 trafficking in 3T3-L1 adipocytes 总被引:1,自引:0,他引:1
Ewart MA Clarke M Kane S Chamberlain LH Gould GW 《The Journal of biological chemistry》2005,280(5):3812-3816
Insulin stimulates glucose transport in adipocytes and muscle by inducing the redistribution of Glut4 from intracellular locations to the plasma membrane. The fusion of Glut4-containing vesicles at the plasma membrane is known to involve the target SNAREs syntaxin 4 and SNAP-23 and the vesicle SNARE VAMP2. Little is known about the initial docking of Glut4 vesicles with the plasma membrane. A recent report has implicated Exo70, a component of the mammalian exocyst complex, in the initial interaction of Glut4 vesicles with the adipocyte plasma membrane. Here, we have examined the role of two other exocyst components, rsec6 and rsec8. We show that insulin promotes a redistribution of rsec6 and rsec8 to the plasma membrane and to cytoskeletal fractions within 3T3-L1 adipocytes but does not modulate levels of these proteins co-localized with Glut4. We further show that adenoviral-mediated overexpression of either rsec6 or rsec8 increases the magnitude of insulin-stimulated glucose transport in 3T3-L1 adipocytes. By contrast, overexpression of rsec6 or rsec8 did not increase the extent of the secretion of adipsin or ACRP30 from adipocytes and had no discernible effect on transferrin receptor traffic. Collectively, our data support a role for the exocyst in insulin-stimulated glucose transport and suggest a model by which insulin-dependent relocation of the exocyst to the plasma membrane may contribute to the specificity of Glut4 vesicle docking and fusion with the adipocyte plasma membrane. 相似文献
10.
Rachdaoui N Nagy LE 《American journal of physiology. Endocrinology and metabolism》2003,285(3):E545-E551
Tumor necrosis factor-alpha (TNF-alpha) is a potent inducer of insulin resistance, and increased TNF-alpha expression is associated with impaired glucose disposal. Although insulin is the primary regulator of glucose transport in adipose, endothelin-1, a vasoconstrictor peptide that signals through the heterotrimeric G proteins Galphaq/11, potently stimulates glucose uptake in 3T3-L1 adipocytes by a mechanism independent of phosphatidylinositol (PI) 3-kinase. Here, we report that exposure of 3T3-L1 adipocytes to TNF-alpha for 48 h dose-dependently decreased endothelin-1-stimulated glucose uptake and translocation of GLUT4 to the plasma membrane. TNF-alpha exposure had no effect on endothelin-1 receptor number at the cell surface. In contrast, TNF-alpha treatment reduced the quantity of Galphaq/11 and proline-rich tyrosine kinase 2 (PYK2) and decreased endothelin-1-stimulated PYK2-Tyr402 tyrosine phosphorylation. Taken together, these results suggest that TNF-alpha-induced desensitization of endothelin-1-stimulated GLUT4 translocation and glucose uptake in 3T3-L1 adipocytes is due, at least in part, to a decreased expression of Galphaq/11, leading to a suppression in tyrosine phosphorylation of PYK2. 相似文献
11.
Bertola A Bonnafous S Cormont M Anty R Tanti JF Tran A Le Marchand-Brustel Y Gual P 《The Journal of biological chemistry》2007,282(14):10325-10332
Adipose tissue is a source of hepatocyte growth factor (HGF), and circulating HGF levels have been associated with elevated body mass index in human. However, the effects of HGF on adipocyte functions have not yet been investigated. We show here that in 3T3-L1 adipocytes HGF stimulates the phosphatidylinositol (PI) 3-kinase-dependent protein kinase B (PKB) activity, AS160 phosphorylation, Glut4 translocation, and consequently, glucose uptake. The initial steps involved in HGF- and insulin-induced glucose uptake are different. HGF enhanced the tyrosine phosphorylation of Gab1, leading to the recruitment of the p85-regulated subunit of PI 3-kinase, whereas p85 was exclusively recruited by IRS1 in response to insulin. In adipocytes rendered insulin-resistant by a long-lasting tumor necrosis factor alpha treatment, the protein level of Gab1 was strongly decreased, and HGF-stimulated PKB activation and glucose uptake were also altered. Moreover, treatment of 3T3-L1 adipocytes with thiazolidinedione, an anti-diabetic drug, enhanced the expression of both HGF and its receptor. These data provide the first evidence that in vitro HGF promotes glucose uptake through a Gab1/PI 3-kinase/PKB/AS160 pathway which was altered in tumor necrosis factor alpha-treated adipocytes. 相似文献
12.
Cho KJ Shim JH Cho MC Choe YK Hong JT Moon DC Kim JW Yoon DY 《Journal of cellular biochemistry》2005,96(4):869-878
Melanocortins, besides their central roles, have also recently been reported to regulate adipocyte metabolism. In this study, we attempted to characterize the mechanism underlying alpha-melanocyte-stimulating hormone (MSH)-induced lipolysis, and compared it with that of the adrenocorticotrophin hormone (ACTH) in 3T3-L1 adipocytes. Similar to ACTH, MSH treatment resulted in the release of glycerol into the cell supernatant. The activity of hormone-sensitive lipase, a rate-limiting enzyme, which is involved in lipolysis, was significantly increased by MSH treatment. In addition, a variety of kinases, including protein kinase A (PKA) and extracellular signal-regulated kinase (ERK) were also phosphorylated as the result of MSH treatment, and their specific inhibitors caused a reduction in MSH-induced glycerol release and HSL activity, indicating that MSH-induced lipolysis was mediated by these kinases. These results suggest that PKA and ERK constitute the principal signaling pathways implicated in the MSH-induced lipolytic process via the regulation of HSL in 3T3-L1 adipocytes. 相似文献
13.
James DJ Salaün C Brandie FM Connell JM Chamberlain LH 《The Journal of biological chemistry》2004,279(20):20567-20570
Insulin stimulates the movement of the facilitative glucose transporter glucose transporter-4 (Glut4) from an intracellular compartment to the plasma membrane in adipocytes and muscle cells, resulting in an increased rate of glucose uptake. Insulin-stimulated Glut4 translocation and glucose transport are abolished by wortmannin, a specific inhibitor of phosphatidylinositol 3'-kinase (PI3K). Here, we demonstrate that neomycin, a drug that masks the cellular substrate of PI3K, phosphatidylinositol 4,5-bisphosphate (PIP), prevents wortmannin inhibition of insulin-stimulated (2)Glut4 translocation and glucose transport without activating protein kinase B, a downstream effector of PI3K. These results suggest that PIP(2) may have an important regulatory function in insulin-stimulated Glut4 translocation and glucose transport. 相似文献
14.
Impaired translocation of the glucose transporter isoform 4 (Glut4) to the plasma membrane in fat and skeletal muscle cells may represent a primary defect in the development of type 2 diabetes mellitus. Glut4 is localized in specialized storage vesicles (GSVs), the biological nature and biogenesis of which are not known. Here, we report that GSVs are formed in differentiating 3T3-L1 adipocytes upon induction of sortilin on day 2 of differentiation. Forced expression of Glut4 prior to induction of sortilin leads to rapid degradation of the transporter, whereas overexpression of sortilin increases formation of GSVs and stimulates insulin-regulated glucose uptake. Knockdown of sortilin decreases both formation of GSVs and insulin-regulated glucose uptake. Finally, we have reconstituted functional GSVs in undifferentiated cells by double transfection of Glut4 and sortilin. Thus, sortilin is not only essential, but also sufficient for biogenesis of GSVs and acquisition of insulin responsiveness in adipose cells. 相似文献
15.
The present study was designed to determine whether hydroxymethylglutaryl-CoA reductase inhibitors (statins) modulate the NO production via iNOS in adipocytes stimulated by lipopolysaccharide (L) and tumour necrosis factor-α (T). Well-differentiated 3T3-L1 adipocytes significantly produced NO by LT-treatment. Pre-incubation with simvastatin, a lipophilic statin, pravastatin, a hydrophilic one, or Y27632, an inhibitor of Rho kinase, further enhanced the production of NO. The effect of simvastatin was offset by mevalonate and geranylgeranyl pyrophosphate (GGPP) but not by squalene. The mRNA level for iNOS parallelled the NO production. The NF-κB was activated by the LT-treatment and was further enhanced by simvastatin, pravastatin or Y27632 addition. Mevalonate and GGPP completely offset the effect of simvastatin. Statins and Y27632 also further increased the interleukin-6 secretion in the LT-treated 3T3-L1 adipocytes. These results suggest that statins, especially lipophilic type, enhance induction of iNOS by inhibiting the small GTP-binding protein signal in adipocytes. 相似文献
16.
The present study was designed to determine whether hydroxymethylglutaryl-CoA reductase inhibitors (statins) modulate the NO production via iNOS in adipocytes stimulated by lipopolysaccharide (L) and tumour necrosis factor-alpha (T). Well-differentiated 3T3-L1 adipocytes significantly produced NO by LT-treatment. Pre-incubation with simvastatin, a lipophilic statin, pravastatin, a hydrophilic one, or Y27632, an inhibitor of Rho kinase, further enhanced the production of NO. The effect of simvastatin was offset by mevalonate and geranylgeranyl pyrophosphate (GGPP) but not by squalene. The mRNA level for iNOS parallelled the NO production. The NF-kappaB was activated by the LT-treatment and was further enhanced by simvastatin, pravastatin or Y27632 addition. Mevalonate and GGPP completely offset the effect of simvastatin. Statins and Y27632 also further increased the interleukin-6 secretion in the LT-treated 3T3-L1 adipocytes. These results suggest that statins, especially lipophilic type, enhance induction of iNOS by inhibiting the small GTP-binding protein signal in adipocytes. 相似文献
17.
18.
In adipose and muscle, insulin stimulates glucose uptake and glycogen synthase activity. Phosphatidylinositol 3-kinase (PI3K) activation is necessary but not sufficient for these metabolic actions of insulin. The insulin-stimulated translocation of phospho-c-Cbl to lipid rafts, via its association with CAP, comprises a second pathway regulating GLUT4 translocation. In 3T3-L1 adipocytes, overexpression of a dominant negative CAP mutant (CAP Delta SH3) completely blocked the insulin-stimulated glucose transport and glycogen synthesis but only partially inhibited glycogen synthase activation. In contrast, CAP Delta SH3 expression did not affect glycogen synthase activation by insulin in the absence of extracellular glucose. Moreover, CAP Delta SH3 has no effect on the PI3K-dependent activation of protein phosphatase-1 or phosphorylation of glycogen synthase kinase-3. These results indicate blockade of the c-Cbl/CAP pathway directly inhibits insulin-stimulated glucose uptake, which results in secondary inhibition of glycogen synthase activation and glycogen synthesis. 相似文献
19.
20.