首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous observations that the highly conserved poxvirus-encoded serpins inhibit cytotoxic activities of alloreactive CTL via granule and/or Fas-mediated pathways was taken to indicate their involvement in immune evasion by poxviruses. We now show that interference with 51Cr release from target cells by ectromelia and cowpoxvirus is limited to alloreactive but not MHC-restricted CTL. The data are in support of the paramount importance of CTL and its effector molecule perforin in the recovery from primary ectromelia virus infection and question the role of serpins in the evasion of poxviruses from killing by CTL. Further analysis of poxvirus interference with target cell lysis by alloreactive CTL revealed that suppression primarily affects the Fas-mediated, and to a lesser extent, the granule exocytosis pathway. Serpin-2 is the main contributor to suppression for both killing pathways. In addition, inhibition of lysis was shown to be both target cell type- and MHC allotype-dependent. We hypothesize that differences in TCR affinities and/or state of activation between alloreactive and MHC-restricted CTL as well as the quality (origin) of target cells are responsible for the observed phenomenon.  相似文献   

2.
In this study, we have investigated the mechanisms used by wild-type p53 (wtp53) to potentiate tumor cell susceptibility to CTL-mediated cell death. We report that wtp53 restoration in a human lung carcinoma cell line Institut Gustave Roussy (IGR)-Heu, displaying a mutated p53, resulted in up-regulation of Fas/CD95 receptor expression associated with an increase of tumor cell sensitivity to the autologous CTL clone, Heu127. However, when IGR-Heu cells were transfected with Fas cDNA, no potentiation to Heu127-mediated lysis was observed, indicating that induction of CD95 is not sufficient to sensitize target cells to CTL killing. Importantly, our data indicate that the effect of wtp53 on the Fas-mediated pathway involves a degradation of short cellular FLICE inhibitory protein resulting in subsequent caspase 8 activation. Furthermore, we demonstrate that wtp53 restoration also resulted in CTL-induced Bid translocation into mitochondria and a subsequent mitochondrial membrane permeabilization leading to cytochrome c release. These results indicate that tumor cell killing by autologous CTL can be enhanced by targeting degranulation-independent mechanisms via restoration of wtp53, a key determinant of apoptotic machinery regulation.  相似文献   

3.
The present study was designed to examine the roles of p53, reactive oxygen species (ROS), and ceramide, and to determine their mutual relationships during tumor necrosis factor (TNF)-alpha-induced apoptosis of human glioma cells. In cells possessing wild-type p53, TNF-alpha stimulated ceramide formation via the activation of both neutral and acid sphingomyelinases (SMases), accompanied by superoxide anion (O2-*) production, and induced mitochondrial depolarization and cytochrome c release, whereas p53-deficient cells were partially resistant to TNF-alpha and lacked O2-* generation and neutral SMase activation. Restoration of functional p53 sensitized glioma cells expressing mutant p53 to TNF-alpha by accumulation of O2-*. z-IETD-fmk (benzyloxycarbonyl-Ile-Glu-Thr-Asp fluoromethyl ketone), but not z-DEVD-fmk (benzyloxycarbonyl-Asp-Glu-Val-Asp fluoromethyl ketone), blocked TNF-alpha-induced ceramide formation through both SMases as well as O2-* generation. Caspase-8 was processed by TNF-alpha regardless of p53 status of cells or the presence of antioxidants. Two separate signaling cascades, p53-mediated ROS-dependent and -independent pathways, both of which are initiated by caspase-8 activation, thus contribute to ceramide formation in TNF-alpha-induced apoptosis of human glioma cells.  相似文献   

4.
CTL eliminate cells infected with intracellular pathogens and tumor cells by two distinct mechanisms mediated by Fas ligand (FasL) and lytic granules that contain perforin and granzymes. In this study we show that an epoxycyclohexenone derivative,(2R,3R,4S)-2,3-epoxy-4-hydroxy-5-hydroxymethyl-6-(1E)-propenyl-cyclohex-5-en-1-one (ECH) specifically inhibits the FasL-dependent killing pathway in CTL-mediated cytotoxicity. Recently, we have reported that ECH blocks activation of procaspase-8 in the death-inducing signaling complex and thereby prevents apoptosis induced by anti-Fas Ab or soluble FasL. Consistent with this finding, ECH profoundly inhibited Fas-mediated DNA fragmentation and cytolysis of target cells induced by perforin-negative mouse CD4+ CTL and alloantigen-specific mouse CD8+ CTL pretreated with an inhibitor of vacuolar type H+-ATPase concanamycin A that selectively induces inactivation and proteolytic degradation of perforin in lytic granules. However, ECH barely influenced perforin/granzyme-dependent DNA fragmentation and cytolysis of target cells mediated by alloantigen-specific mouse CD8+ CTL. The components of lytic granules and the granule exocytosis pathway upon CD3 stimulation were also insensitive to ECH. In conclusion, our present results demonstrate that ECH is a specific nonpeptide inhibitor of FasL-dependent apoptosis in CTL-mediated cytotoxicity. Therefore, ECH can be used as a bioprobe to evaluate the contributions of two distinct killing pathways in various CTL-target settings.  相似文献   

5.
Cytotoxic lymphocytes (CLs) induce caspase activation and apoptosis of target cells either through Fas activation or through release of granule cytotoxins, particularly granzyme B. CLs themselves resist granule-mediated apoptosis but are eventually cleared via Fas-mediated apoptosis. Here we show that the CL cytoplasmic serpin proteinase inhibitor 9 (PI-9) can protect transfected cells against apoptosis induced by either purified granzyme B and perforin or intact CLs. A PI-9 P1 mutant (Glu to Asp) is a 100-fold-less-efficient granzyme B inhibitor that no longer protects against granzyme B-mediated apoptosis. PI-9 is highly specific for granzyme B because it does not inhibit eight of the nine caspases tested or protect transfected cells against Fas-mediated apoptosis. In contrast, the P1(Asp) mutant is an effective caspase inhibitor that protects against Fas-mediated apoptosis. We propose that PI-9 shields CLs specifically against misdirected granzyme B to prevent autolysis or fratricide, but it does not interfere with homeostatic deletion via Fas-mediated apoptosis.  相似文献   

6.
The inability of certain neoplastic populations to undergo Fas-mediated death by immune effector mechanisms may confer a selective survival advantage, which may contribute to tumor escape. In this study, we examined the role of Fas-mediated lysis in a human-antigen (Ag)-specific cytotoxic T lymphocyte (CTL)/colon carcinoma cell model, and the regulation of the lytic phenotype by interferon γ (IFNγ). Previously, we have identified mutated ras peptides reflecting the valine-for-glycine substitution at position 12 as unique HLA-A2-restricted, CD8+ CTL neo-epitopes. Peptide-specific CTL, established from both normal and carcinoma-bearing individuals, lysed in vitro a HLA-A2+ primary colon adenocarcinoma cell line, SW480, harboring the naturally occurring ras mutation. Pretreatment of SW480 cells with IFNγ was necessary to promote efficient Ag-specific CTL killing, although the mechanisms by which IFNγ influenced the lytic outcome remains to be elucidated. Here, we show, by phenotypic analysis of SW480 cells, a significant up-regulation of HLA-A2, ICAM-1 and Fas molecules after IFNγ pretreatment, which paralleled their sensitivity to lysis with anti-Fas stimuli. Moreover, nearly half of the lytic response to IFNγ-treated SW480 cells was inhibited by neutralizing anti-Fas or anti-Fasligand (FasL) mAb, revealing for the first time an important functional role for Fas/FasL interactions in carcinoma cell killing by human Ag-specific CTL. mAb against HLA-A2, ICAM-1, the αβ T cell receptor (TCR) and Fas molecules inhibited lysis; however, if these CTL were preactivated to express functional FasL and then used as effectors, only anti-Fas mAb efficiently blocked lysis. IFNγ also increased pro-caspase-3 protein expression and its subsequent activation in SW480 cells following Ag-specific CTL attack. Peptide-based caspase inhibitors blocked both caspase-3 activation and CTL-mediated lysis. Overall, these data suggested that IFNγ (a) facilitated both Ag-dependent and Ag-independent events as a prerequisite for efficient CTL/target interactions, FasL up-regulation and triggering of Fas-dependent, as well as Fas-independent lysis (perforin); and (b) enhanced or restored a Fas-sensitive phenotype in SW480 cells, reflecting modulation of cell-surface and intracellular elements of the Fas pathway. Thus, IFNγ may play an important role in the regulation of a human neoplastic cell death phenotype, which may have implications for our understanding of the processes of both tumor evasion and tumor regression following Ag-specific CTL attack. Received: 20 December 1999 / Accepted: 1 February 2000  相似文献   

7.
Granzyme B (gzmB) of cytotoxic T lymphocytes (CTL) is essential for recovery from intracellular pathogens, but the molecular basis of its action is still unresolved. Here, we analyzed gzmB-mediated death pathways under physiological conditions using ex vivo virus-immune CTLs that express perf and gzmB, but not gzmA (gzmB(+)CTL). We show that gzmB(+)CTL abrogate target cell proliferation most likely by inducing cell death, independent of caspases and mitochondrial signaling. In addition, the data reveal that gzmB(+)CTL independently induce pro-apoptotic processes either via caspase-3/-7, leading to plasma membrane perturbance and ROS production or via Bid/Bak/Bax, resulting in cytochrome c release and that both pathways elicit loss of DeltaPsi(m). Our data provide evidence for a pleiotropic pro-apoptotic function of gzmB presumably to counteract evasion strategies of pathogens and to control tumors.  相似文献   

8.
We have examined UV irradiation-induced cell death in Jurkat cells and evaluated the relationships that exist between inhibition of caspase activity and the signaling mechanisms and pathways of apoptosis. Jurkat cells were irradiated with UV-C light, either with or without pretreatment with the pan-caspase inhibitor, z-VAD-fmk (ZVAD), or the more selective caspase inhibitors z-IETD-fmk (IETD), z-LEHD-fmk (LEHD), and z-DEVD-fmk (DEVD). Flow cytometry was used to examine alterations in viability, cell size, plasma membrane potential (PMP), mitochondrial membrane potential (DeltaPsi(mito)), intracellular Na(+) and K(+) concentrations, and DNA degradation. Processing of pro-caspases 3, 8, and 9 and the pro-apoptotic protein Bid was determined by Western blotting. UV-C irradiation of Jurkat cells resulted in characteristic apoptosis within 6 h after treatment and pretreatment of cells with ZVAD blocked these features. In contrast, pretreatment of the cells with the more selective caspase inhibitors under conditions that effectively blocked DNA degradation and inhibited caspase 3 and 8 processing as well as Bid cleavage had little protective effect on the other apoptotic characteristics examined. Thus, both intrinsic and extrinsic pathways are activated during UV-induced apoptosis in Jurkat cells and this redundancy appears to assure cell death during selective caspase inhibition.  相似文献   

9.
Granule exocytosis is the main pathway for the immune elimination of virus-infected cells and tumour cells by cytotoxic T lymphocytes and natural killer cells. After target-cell recognition, release of the cytotoxic granule contents into the immunological synapse formed between the killer cell and its target induces apoptosis. The granules contain two membrane-perturbing proteins, perforin and granulysin, and a family of serine proteases known as granzymes, complexed with the proteoglycan serglycin. In this review, I discuss recent insights into the mechanisms of granule-mediated cytotoxicity, focusing on how granzymes A, B and C and granulysin activate cell death through caspase-independent pathways.  相似文献   

10.
We have developed a non-radioactive flow-cytometry assay to monitor and quantify the target-cell killing activities mediated by cytotoxic T lymphocytes (CTLs). This flow-cytometry CTL (FCC) assay is predicated on measurement of CTL-induced caspase activation in target cells through detection of the specific cleavage of fluorogenic caspase substrates. Here we show that this assay reliably detects antigen-specific CTL killing of target cells, and demonstrate that it provides a more sensitive, more informative and safer alternative to the standard 51Cr-release assay most often used to quantify CTL responses. The FCC assay can be used to study CTL-mediated killing of primary host target cells of different cell lineages, and enables the study of antigen-specific cellular immune responses in real time at the single-cell level. As such, the FCC assay can provide a valuable tool for studies of infectious disease pathogenesis and development of new vaccines and immunotherapies.  相似文献   

11.
MEK/ERK-mediated signals have recently been found to inhibit Fas-mediated cell death through inhibition of caspase-8 activity. It remains unknown whether MEK/ERK-mediated signals affect ionizing radiation (IR)-induced cell death. Here we demonstrate that MEK/ERK-mediated signals selectively inhibit IR-induced loss of mitochondrial membrane potential (DeltaPsi(m)) and subsequent cell death. In Jurkat cells, TPA strongly activated ERK and inhibited the IR-induced caspase-8/Bid cleavage and the loss of DeltaPsi(m). The inhibitory effect of TPA was mostly abrogated by pretreatment of a specific MEK inhibitor PD98059, indicating that the effect depends upon MEK/ERK-mediated signals. Moreover, BAF-B03 transfectants expressing IL-2 receptor (IL-2R) beta(c) chain lacking the acidic region, which is responsible for MEK/ERK-mediated signals, revealed higher sensitivity to IR than the transfectants expressing wild-type IL-2R. Interestingly, the signals could neither protect the DeltaPsi(m) loss nor cell death in UV-irradiated cells. These data imply that the anti-apoptotic effect of MEK/ERK-mediated signals appears to selectively inhibit the IR-induced cell death through protection of the DeltaPsi(m) loss. Our data enlighten an anti-apoptotic function of MEK/ERK pathway against IR-induced apoptosis, thereby implying its contribution to radioresistance.  相似文献   

12.
Two types of catfish alloantigen-dependent cytotoxic T cells were cloned from PBL from a fish immunized in vivo and stimulated in vitro with the allogeneic B cell line 3B11. Because these are the first clonal cytotoxic T cell lines derived from an ectothermic vertebrate, studies were undertaken to characterize their recognition and cytotoxic mechanisms. The first type of CTL (group I) shows strict alloantigen specificity, i.e., they specifically kill and proliferate only in response to 3B11 cells. The second type (group II) shows broad allogeneic specificity, i.e., they kill and proliferate in response to several different allogeneic cells in addition to 3B11. "Cold" target-inhibition studies suggest that group II CTL recognize their targets via a single receptor, because the killing of one allotarget can be inhibited by a different allotarget. Both types of catfish CTL form conjugates with and kill targets by apoptosis. Killing by Ag-specific cytotoxic T cells (group I) was completely inhibited by treatment with EGTA or concanamycin A, and this killing is sensitive to PMSF inhibition, suggesting that killing was mediated exclusively by the secretory perforin/granzyme mechanism. In contrast, killing by the broadly specific T cytotoxic cells (group II) was only partially inhibited by either EGTA or concanamycin A, suggesting that these cells use a cytotoxic mechanism in addition to that involving perforin/granzyme. Consistent with the presumed use of a secretory pathway, both groups of CTL possess putative lytic granules. These results suggest that catfish CTL show heterogeneity with respect to target recognition and cytotoxic mechanisms.  相似文献   

13.
Kidney cancer is a devastating disease; however, biological therapies have achieved some limited success. The murine renal cancer Renca has been used as a model for developing new preclinical approaches to the treatment of renal cell carcinoma. Successful cytokine-based approaches require CD8(+) T cells, but the exact mechanisms by which T cells mediate therapeutic benefit have not been completely identified. After successful biological therapy of Renca in BALB/c mice, we generated CTLs in vitro using mixed lymphocyte tumor cultures. These CTL mediated tumor-specific H-2K(d)-restricted lysis and production of IFN-gamma, TNF-alpha, and Fas ligand (FasL) in response to Renca. CTL used both granule- and FasL-mediated mechanisms to lyse Renca, although granule-mediated killing was the predominant lytic mechanism in vitro. The cytokines IFN-gamma and TNF-alpha increased the sensitivity of Renca cells to CTL lysis by both granule- and FasL-mediated death pathways. Adoptive transfer of these anti-Renca CTL into tumor-bearing mice cured most mice of established experimental pulmonary metastases, and successfully treated mice were immune to tumor rechallenge. Interestingly, we were able to establish Renca-specific CTL from mice gene targeted for perforin (pfp(-/-)) mice. Although these pfp(-/-) CTL showed reduced cytotoxic activity against Renca, their IFN-gamma production in the presence of Renca targets was equivalent to that of wild-type CTL, and adoptive transfer of pfp(-/-) CTL was as efficient as wild-type CTL in causing regression of established Renca pulmonary metastases. Therefore, although granule-mediated killing is of paramount importance for CTL-mediated lysis in vitro, some major in vivo effector mechanisms clearly are independent of perforin.  相似文献   

14.
Zhu LP  Yu XD  Ling S  Brown RA  Kuo TH 《Cell calcium》2000,28(2):107-117
Using distinct models of apoptosis and necrosis, we have investigated the effect of mitochondrial Ca(2+)(Ca(m)) homeostasis in the regulation of cell death in neuroblastoma cells as well as cardiac myocytes. The steady state level of Ca(m)was determined as the FCCP-releasable Ca(2+). Culturing cells with low concentration of extracellular Ca(2+)(Ca(o)) or with EGTA triggered an early reduction in both the Ca(m)store and the membrane potential (DeltaPsi(m)). This was followed by the detection of cytochrome c release, caspase activation, and apoptosis. Inhibitors of the mitochondrial permeability transition pore such as cyclosporin A and Bcl-2 blocked the release of Ca(m)and inhibited apoptosis. In contrast, mitochondrial Ca(2+)overload resulted in necrotic cell death. Culturing cells in the presence of excess Ca(o)led to increased Ca(m)load together with a decrease of DeltaPsi(m)that reached maximum at 1 h, with necrosis occurring at 2 h. While the decline of Ca(m)and DeltaPsi(m)was a coupled reaction for apoptosis, this relationship was uncoupled during necrosis. Clonazepam, a relatively specific inhibitor of the mitochondrial Na/Ca exchanger, was able to protect the cells from necrosis by reducing Ca(m)overload. Importantly, combination of clonazepam and cyclosporin showed a cooperative effect in further reducing the Ca(m)overload and abolished cell death. The data imply the participation of Ca(m)homeostasis in the regulation of apoptosis and necrosis.  相似文献   

15.
Linker for activation of T cells (LAT) is a transmembrane adaptor protein that is essential to bridge T cell receptor (TCR) engagement to downstream signaling events. The indispensable role of LAT in thymocyte development and T cell activation has been well characterized; however, the function of LAT in cytotoxic-T-lymphocyte (CTL) cytotoxicity remains unknown. We show here that LAT-deficient CTLs failed to upregulate FasL and produce gamma interferon after engagement with target cells and had impaired granule-mediated killing. We further dissected the effect of the LAT deletion on each step of granule exocytosis. LAT deficiency led to altered synapse formation, subsequently causing unstable T cell-antigen-presenting cell (APC) conjugates. Microtubule organizing center polarization and granule reorientation were also impaired by LAT deficiency, leading to reduced granule delivery. Despite these defects, granule release was still observed in LAT-deficient CTLs due to residual calcium flux and phospholipase C (PLC) activity. Our data demonstrated that LAT-mediated signaling intricately regulates CTL cytotoxicity at multiple steps.  相似文献   

16.
Ligation of CD47 by its natural ligand thrombospondin (TSP), or cross-linking by CD47 antibodies, triggers caspase-independent cell death in normal and leukemic cells. This kind of cell death is characterised by the cytoplasmic events of apoptosis including externalisation of phosphatidylserines and mitochondria swelling. We report herein selective mitochondrial changes in CD47-dependent cell death of T cells. After T cell stimulation via CD47, a rapid mitochondrial transmembrane potential (deltapsi(m)) disruption is accompanied by the production of reactive oxygen species (ROS) and phosphatidylserine exposure. Surprisingly, mitochondrial dysfunction does not induce cytochrome c or AIF release. Moreover, the dying cells do not exhibit caspase-3 activation and display intact nuclei without any large-scale, or oligonucleosomal DNA fragmentation. We conclude that DeltaPsi(m) loss and ROS production are an early step in CD47-dependent killing and neither cytochrome c, nor AIF are implicated in this new cell death pathway.  相似文献   

17.
In our previous study, the sphingosine-like immunosuppressant ISP-1 was shown to induce apoptosis in the mouse cytotoxic T cell line CTLL-2. In this study, we characterized the ISP-1-induced apoptotic pathway. Although caspase-3-like protease activity increases concomitantly with ISP-1-induced apoptosis in CTLL-2 cells, the apoptosis is not inhibited by caspase-3-like protease inhibitors, i.e. DEVD-cho and z-DEVD-fmk. In contrast, sphingosine-induced apoptosis in CTLL-2 cells is caspase-3-like protease-dependent. A caspase inhibitor with broad specificity, z-VAD-fmk, protects cells from apoptosis induced by ISP-1, indicating that ISP-1-induced apoptosis is dependent on caspase(s) other than caspase-3. Overexpression of Bcl-2 or Bcl-xL suppresses the apoptosis induced by ISP-1, although sphingosine-induced apoptosis is not efficiently inhibited by Bcl-2. Finally, ISP-1-induced mitochondrial depolarization, which is thought to be a checkpoint dividing the apoptotic pathway into upstream and downstream stages, is not inhibited by DEVD-cho, but is inhibited by z-VAD-fmk. These data suggest that a pathway dependent on caspase(s) other than caspase-3 is involved upstream of mitochondrial depolarization in ISP-1-induced apoptosis.  相似文献   

18.
Apoptosis occurs through a sequence of specific biochemical and morphological alterations that define the progress of cell death. The changes of the mitochondrial inner membrane potential (DeltaPsi(m)), the release of cytochrome c to the cytosol, the apoptotic volume decrease (AVD) and the activation of caspases have been measured in RAW 264.7, HeLa and Jurkat T cells incubated with molecules that induce apoptosis through the mitochondrial pathway. Our data show that NO, staurosporine, etoposide and camptothecin increased DeltaPsi(m) in macrophages but not in HeLa and Jurkat cells, that exhibited a DeltaPsi(m) decrease. Moreover, the apoptosis induced by NO in macrophages, but not that promoted by staurosporine, might occur in the absence of AVD. Analysis of the sequence of apoptotic manifestations shows that DeltaPsi(m) precedes AVD and caspase activation in RAW 264.7 cells. Inhibition of AVD abrogates apoptosis in HeLa and Jurkat T cells regardless of the stimuli used. These data suggest that the changes of DeltaPsi(m) are cell-type dependent and that AVD is dispensable for apoptosis in macrophages.  相似文献   

19.
Recent evidence has shown that cloned, murine CTL cell lines are resistant to the cytotoxic components of the toxic granules they release upon specific interaction with their target cells. Inasmuch as the resistance might be due to selection in culture over many months by repeated exposure to these cytolytic components (which are released repeatedly as a result of the cultured CTL being periodically stimulated by target cells), we asked whether primary CTL are also resistant. The primary CTL were elicited in vivo by i.p. injection of allogeneic tumor cells or in vitro by 5- to 6-day MLC or by 48-h exposure to the lectin Con A. The responding cells were separated into purified CD8+ (i.e., CD4-, CD8+) and purified CD4+ (i.e., CD4+, CD8-) T cell populations that were analyzed for cytolytic activity and for resistance to lysis by toxic secretory granules derived from cloned CTL cell lines. The CD8+ T cells were highly cytolytic and relatively resistant; they retained their cytolytic activity and were lysed to a minimal extent (0 to 10%) by quantities of isolated granules that lysed 80 to 90% of the P815 tumor cell line (tested as a representative standard cell line). The CD4+ T cells, in contrast, had only minimal cytolytic activity and were far more susceptible to granule-mediated lysis. Although the resistance of primary CD8+ T cells is impressive, it is not as pronounced as the resistance of the cloned CTL cell lines, indicating that during long-term culture there is some selection for increased resistance to granule-mediated lysis. In contrast to T cells (especially CD8+ T cells), Ia+ macrophages, isolated from primary immune peritoneal exudates, were highly susceptible to granule-mediated lysis.  相似文献   

20.
We have previously identified mutated ras peptides reflecting the glycine to valine substitution at position 12 as HLA-A2-restricted, CD8+ CTL neo-epitopes. CTL lines produced against these peptide epitopes lysed the HLA-A2+ Ag-bearing SW480 primary colon adenocarcinoma cell line, although IFN-gamma treatment of the targets was necessary to achieve efficient cytotoxicity. Here, we compared the lytic phenotype of the SW480 cell line to its metastatic derivative, SW620, as an in vitro paradigm to further characterize the nature of a HLA class I-restricted, Ag-specific CTL response against neoplastic cell lines of primary and metastatic origin. Although both colon carcinoma cell lines were lysed by these Ag-specific CTL following IFN-gamma pretreatment, the mechanisms of lysis were distinct, which reflected differential levels of sensitivity to the Fas pathway. Whereas IFN-gamma pretreatment rendered SW480 cells sensitive to both Fas-dependent and -independent (perforin) pathways, SW620 cells displayed lytic susceptibility to Fas-independent mechanisms only. Moreover, pretreatment of SW480 cells with the anti-colon cancer agent, 5-fluorouracil (5-FU), led to enhanced Fas and ICAM-1 expression and triggered Ag-specific CTL-mediated lysis via Fas- and perforin-based pathways. In contrast, these phenotypic and functional responses were not observed with SW620 cells. Overall, these data suggested that 1) IFN-gamma and 5-FU may enhance the lytic sensitivity of responsive colon carcinoma cells to immune effector mechanisms, including Fas-induced lysis; 2) the malignant phenotype may associate with resistance to Fas-mediated lysis in response to Ag-specific T cell attack; and 3) if Ag-specific CTL possess diverse lytic capabilities, this may overcome, to some extent, the potential "escape" of Fas-resistant carcinoma cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号