首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nowotny  I.  Dähne  J.  Klingelhöfer  D.  Rothe  G.M. 《Plant and Soil》1998,199(1):29-40
Effects of soil acidification and liming on biomass responses and free Al, Ca, K, Mg, Mn and P contents of mycorrhizal roots of mature Norway spruce (Picea abies [L.] Karst.) were studied at Höglwald Forest in Southern Germany.At the untreated site, mycorrhizal root biomass was lower in the acid humus (pH = 3.3) than in the less acid upper (0–5 cm) mineral soil (pH 4.1). Mycorrhizal roots from the humus contained 10% of the level free Al in mycorrhizal roots from the upper mineral soil. During seven years of soil acidification the quantity of mycorrhizal roots remained unaffected in the humus and the upper mineral soil, perhaps due to the high buffering capacity of the humus which prevented a significant alteration of the nutrient status of the roots. However, two years after soil acidification had been terminated, the percentage of mycorrhizal roots in the humus decreased, possibly because the free root concentrations of K had decreased.On the other hand, six years after liming, there was a two-fold increase of the annual mean quantity of mycorrhizal roots in the humus. Compensatory liming (acid irrigation after liming) had a similar effect on mycorrhizal root production in the humus. However, two years after acid irrigation had been terminated a decrease of mycorrhizal roots in the upper mineral soil (0–5 cm) was observed. Since the total amount of mycorrhizal roots in the humus and upper mineral soil remained constant, compensatory liming produced a shift in fine roots to the humus layer.The higher mass of living mycorrhizal roots in the upper mineral soil (0–5 cm) as compared to the humus of the untreated plot as well as the increased mass of mycorrhizal roots in the humus after liming or compensatory liming are both attributed to an increase in pH to 4.5 rather than alleviation of Al toxicity.  相似文献   

2.
Based on field measurements in two agriculturalecosystems, soil respiration and long-term response ofsoil organic carbon content (SOC) was modelled. Themodel predicts the influence of temperature increaseas well as the effects of land-use over a period ofthirty years in a northern German glacial morainelandscape. One of the fields carried a maizemonoculture treated with cattle slurry in addition tomineral fertilizer (maize monoculture), the otherwas managed by crop rotation and recieved organicmanure (crop rotation). The soils of both fieldswere classified as cambic Arenosols. The soilrespiration was measured in the fields by means of theopen dynamic inverted-box method and an infrared gasanalyser. The mean annual soil respiration rates were 268 (maizemonoculture) and 287 mg CO2 m-2 h-1(crop rotation). Factors controlling soil respirationwere soil temperature, soil moisture, root respirationand carbon input into the soil. Q10-valuesof soil respiration were generally higher in winterthan in summer. This trend is interpreted as anadaptive response of the soil microbial communities.In the model a novel mathematical approach withvariable Q10-values as a result oftemperature and moisture adjustment is proposed. Withthe calibrated model soil respiration and SOC werecalculated for both fields and simulations over aperiod of thirty years were established. Simulationswere based on (1) local climatic data, 1961 until1990, and (2) a regional climate scenario for northernGermany with an average temperature increase of 2.1 K.Over the thirty years period with present climateconditions, the SOC pool under crop rotation wasnearly stable due to the higher carbon inputs, whereasabout 16 t C ha-1 were lost under maizemonoculture. Under global warming the mean annualsoil respiration for both fields increased and SOCdecreased by ca. 10 t C ha-1 under croprotation and by more than 20 t C ha-1 undermaize monoculture. It was shown that overestimationof carbon losses in long-term prognoses can be avoidedby including a Q10-adjustment in soilrespiration models.  相似文献   

3.
Elevated CO2 increases belowground respiration in California grasslands   总被引:1,自引:0,他引:1  
This study was designed to identify potential effects of elevated CO2 on belowground respiration (the sum of root and heterotrophic respiration) in field and microcosm ecosystems and on the annual carbon budget. We made three sets of respiration measurements in two CO2 treatments, i.e., (1) monthly in the sandstone grassland and in microcosms from November 1993 to June 1994; (2) at the annual peak of live biomass (March and April) in the serpentine and sandstone grasslands in 1993 and 1994; and (3) at peak biomass in the microcosms with monocultures of seven species in 1993. To help understand ecosystem carbon cycling, we also made supplementary measurements of belowground respiration monthly in sandstone and serpentine grasslands located within 500 m of the CO2 experiment site. The seasonal average respiration rate in the sandstone grassland was 2.12 mol m-2 s-1 in elevated CO2, which was 42% higher than the 1.49 mol m-2 s-1 measured in ambient CO2 (P=0.007). Studies of seven individual species in the microcosms indicated that respiration was positively correlated with plant biomass and increased, on average, by 70% with CO2. Monthly measurements revealed a strong seasonality in belowground respiration, being low (0–0.5 mol CO2 m-2 s-1 in the two grasslands adjacent to the CO2 site) in the summer dry season and high (2–4 mol CO2 m-2 s-1 in the sandstone grassland and 2–7 mol CO2 m-2 s-1 in the microcosms) during the growing season from the onset of fall rains in November to early spring in April and May. Estimated annual carbon effluxes from the soil were 323 and 440 g C m-2 year-1 for the sandstone grasslands in ambient and elevated CO2. That CO2-stimulated increase in annual soil carbon efflux is more than twice as big as the increase in aboveground net primary productivity (NPPa) and approximately 60% of NPPa in this grassland in the current CO2 environment. The results of this study suggest that below-ground respiration can dissipate most of the increase in photosynthesis stimulated by elevated CO2.CIWDPB Publication # 1271  相似文献   

4.
Diurnal cycle of carbon isotope ratio in soil CO2 in various ecosystems   总被引:1,自引:1,他引:0  
Our investigations of diurnal variations of the 13C/12C ratio and CO2 content in soil air were carried out in three environments during periods of high biosphere activity. It has been observed that diurnal variation of CO2 concentration is negatively correlated 13. Particularly great variations occurred at shallow soil depths (10–30 cm) when the plant cover activity was high while the soil temperature was rather low. Under such conditions the 13 variations had the magnitude of 4, while the CO2 concentration varied more than doubly. The maximum of the 13C/12C ratlo and the minimum of the CO2 concentration in a cultivated field with winter wheat took place in the afternoon, whereas in deciduous forest similar patterns were observed at dawn. In these cases soil temperatures at 10 cm depths varied less than 2°C. Hence, under wheat the variation in root respiration rate seem to be the main reason of the recorded varations. In an uncultivated grass-field during the hottest period in summer we did not measure any distinct variations of CO2 properties in spite of the fact that soil temperature varied up to 5°C. This might be due to dominant microbial respiration at the high soil temperature, which exceeded 20°C.  相似文献   

5.
Papke  H.  Papen  H. 《Plant and Soil》1998,199(1):131-139
Flux measurements of nitric oxide (NO) and nitrogen dioxide (NO2) were performed in a coniferous forest (Höglwald) in southern Germany using a fully automated measuring system based on the dynamic chamber method. The forest soil was predominately a source of NO, but mean flux rates of NO ranged from –26.3 (deposition) to 55 g N m-2 h-1 (emission). NO2 was deposited on the forest soil with mean flux rates ranging from –4 to –72 g N m-2 h-1 . Removal of forest floor vegetation did not influence NO or NO2 fluxes. Apparently, forest floor vegetation was neither a source of NO nor a significant sink of NO2. When the organic layer of the forest soil was removed, net NO flux changed from emission to deposition. Thus NO emitted to the atmosphere was produced almost exclusively in the organic layer of the forest soil. Liming caused a significant decrease in the rate of NO emission by 43 to 100%, whereas irrigation with simulated acid rain increased the emission of NO by a factor of 3.1. Irrigation with simulated normal rain decreased the emission of NO by 35 to 100%. No such effects could be detected for the deposition of NO2.  相似文献   

6.
A study was made of the effect of soil and crop type on the soil and total ecosystem respiration rates in agricultural soils in southern Finland. The main interest was to compare the soil respiration rates in peat and two different mineral soils growing barley, grass and potato. Respiration measurements were conducted during the growing season with (1) a closed-dynamic ecosystem respiration chamber, in which combined plant and soil respiration was measured and (2) a closed-dynamic soil respiration chamber which measured only the soil and root-derived respiration. A semi-empirical model including separate functions for the soil and plant respiration components was used for the total ecosystem respiration (TER), and the resulting soil respiration parameters for different soil and crop types were compared. Both methods showed that the soil respiration in the peat soil was 2–3 times as high as that in the mineral soils, varying from 0.11 to 0.36 mg (CO2) m–2 s–1 in the peat soil and from 0.02 to 0.17 mg (CO2) m–2 s–1 in the mineral soils. The difference between the soil types was mainly attributed to the soil organic C content, which in the uppermost 20 cm of the peat soil was 24 kg m–2, being about 4 times as high as that in the mineral soils. Depending on the measurement method, the soil respiration in the sandy soil was slightly higher than or similar to that in the clay soil. In each soil type, the soil respiration was highest on the grass plots. Higher soil respiration parameter values (Rs0, describing the soil respiration at a soil temperature of 10°C, and obtained by modelling) were found on the barley than on the potato plots. The difference was explained by the different cultivation history of the plots, as the potato plots had lain fallow during the preceding summer. The total ecosystem respiration followed the seasonal evolution in the leaf area and measured photosynthetic flux rates. The 2–3-fold peat soil respiration term as compared to mineral soil indicates that the cultivated peat soil ecosystem is a strong net CO2 source.  相似文献   

7.
In order to clarify the role of micro-organisms in the carbon cycle of the boreal forest ecosystem, the vertical distribution of soil carbon, soil microbial biomass and respiratory activity was studied in a black spruce forest near Candle Lake in Saskatchewan, Canada. The total amount of carbon contained in moss and soil layers (to the depth of 50cm beneath the mineral soil surface) was 7.2kgm–2, about 47% of which was in the L and FH horizons of the soil. Soil microbial biomass per dry weight of soil was largest in the L horizon, while the biomass per ground area was largest in the FH horizon. Soil respiration rate, measured using a portable infrared gas analyzer, was highest in the FH horizon, exceeding 50% of the total soil respiration. Low but significant CO2 emission was detected even in deeper soil horizon (E horizon). We also examined the respiration rate of cut roots and the effect of root excision on respiration. The contribution of root respiration to total soil respiration, calculated from root biomass and respiration rate of cut roots, was about 54%. The amount of carbon evolved through microbial respiration during the snow-free season (June–October) was estimated as 221gCm–2. Micro-organisms in the L horizon showed high respiratory activity as compared with those in deeper soil horizons.  相似文献   

8.
We undertake a synthesis of the most relevant results from the presentations at the meeting Plant-Soil Carbon Below-Ground: The Effects of Elevated CO2 (Oxford-UK, September 1995), many of which are published in this Special Issue. Below-ground responses to elevated [CO2] are important because the capacity of soils for long-term carbon sequestration. We draw the following conclusions: (i) several ecosystems exposed to elevated [CO2] showed sustained increased CO2 uptake at the plot level for many years. A few systems, however, showed complete down-regulation of net CO2 uptake after several years of elevated [CO2] exposure; (ii) under elevated [CO2], a greater proportion of fixed carbon is generally allocated below-ground, potentially increasing the capacity of below-ground sinks; and (iii) some of the increased capacity of these sinks may lead to increased long-term soil carbon sequestration, although strong evidence is still lacking. We highlight the need for more soil studies to be undertaken within ongoing ecosystem-level experiments, and suggest that while some key experiments already established should be maintained to allow long term effects and feedbacks to take place, more research effort should be directed to mechanisms of soil organic matter stabilization.  相似文献   

9.
Saviozzi  A.  Levi-Minzi  R.  Cardelli  R.  Riffaldi  R. 《Plant and Soil》2001,233(2):251-259
Changes in soil quality after 45 years of continuous production of corn (Zea mays L.) by the conventional tillage method (C) compared with adjacent poplar forest (F) and native grassland (G) sites were examined. The investigated parameters were: total and humified organic C, total N, light fraction content and composition, water-soluble organic C (WSOC), water-soluble carbohydrates (WSC), phenolic substances, biomass C, cumulative CO2-C (soil respiration) (C m), enzyme activities (alkaline phosphatase, protease, -glucosidase, urease, catalase and dehydrogenase). Empirical indexes of soil quality were also calculated: biomass C/organic C, specific respiration of biomass C (qCO2), death rate quotient (qD), metabolic potential (MP), biological index of fertility (BIF), enzyme activity number (EAN) and hydrolysing coefficient (HC). Results indicate that long-term corn production at an intensive level caused a marked decline in all examined parameters. Between the undisturbed systems, native grassland showed higher values of soil quality parameters than forest site. The indexes most responsive to management practices that may provide indications of the effects of soil cultivation, as well as of the differently undisturbed ecosystems were: organic C, WSC, C m, protease, -glucosidase, urease and HC. Soil enzyme activities were well related with, and not more sensitive than organic carbon.  相似文献   

10.
P.-O. Lundquist 《Plant and Soil》2005,273(1-2):235-244
The carbon cost of nitrogenase activity was investigated to determine symbiotic efficiency of the actinorhizal root nodule symbiosis between the woody perennial Alnus incana and the soil bacterium Frankia. Respiration (CO2 production) and nitrogenase activity (H2 production) by intact nodulated root systems were continuously recorded in short-term assays in an open-flow gas exchange system. The assays were conducted in N2:O2, thus under N2-fixing conditions, in all experiments except for one. This avoided the declines in nitrogenase activity and respiration due to N2 deprivation that occur in acetylene reduction assays and during extended Ar:O2 exposures in H2 assays. Two approaches were used: (i) direct estimation of root and nodule respiration by removing nodules, and (ii) decreasing the partial pressure of O2 from 21 to 15% to use the strong relationship between respiration and nitrogenase activity to calculate CO2/H2. The electron allocation of nitrogenase was determined to be 0.6 and used to convert the results into moles of CO2 produced per 2e transferred by nitrogenase to reduction of N2. The results ranged from 2.6 to 3.4mol CO2 produced per 2e. Carbon cost expressed as gC produced per gN reduced ranged from 4.5 to 5.8. The result for this actinorhizal tree symbiosis is in the low range of estimates for N2-fixing actinorhizal symbioses and crop legumes. Methodology and comparisons of root nodule physiology among actinorhizal and legume plants are discussed.  相似文献   

11.
We previously used dual stable isotope techniques to partition soil CO2 efflux into three source components (rhizosphere respiration, litter decomposition, and soil organic matter (SOM) oxidation) using experimental chambers planted with Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] seedlings. The components responded differently to elevated CO2 (ambient + 200 mol mol–1) and elevated temperature (ambient + 4 °C) treatments during the first year. Rhizosphere respiration increased most under elevated CO2, and SOM oxidation increased most under elevated temperature. However, many studies show that plants and soil processes can respond to altered climates in a transient way. Herein, we extend our analysis to 2 years to evaluate the stability of the responses of the source components. Total soil CO2 efflux increased significantly under elevated CO2 and elevated temperature in both years (1994 and 1995), but the enhancement was much less in 1995. Rhizosphere respiration increased less under elevated temperature in 1995 compared with 1994. Litter decomposition also tended to increase comparatively less in 1995 under elevated CO2, but was unresponsive to elevated temperature between years. In contrast, SOM oxidation was similar under elevated CO2 in the 2 years. Less SOM oxidation occurred under elevated temperature in 1995 compared with 1994. Our results indicate that temporal variations can occur in CO2 production by the sources. The variations likely involve responses to antecedent physical disruption of the soil and physiological processes.  相似文献   

12.
Hagedorn  Frank  Bucher  Jürg B.  Tarjan  David  Rusert  Peter  Bucher-Wallin  Inga 《Plant and Soil》2000,224(2):273-286
The objectives of this study were to estimate how soil type, elevated N deposition (0.7 vs. 7 g N m–2y–1) and tree species influence the potential effects of elevated CO2 (370 vs. 570 mol CO2 mol–1) on N pools and fluxes in forest soils. Model spruce-beech forest ecosystems were established on a nutrient-rich calcareous sand and on a nutrient-poor acidic loam in large open-top chambers. In the fourth year of treatment, we measured N concentrations in the soil solution at different depths, estimated N accumulation by ion exchange resin (IER) bags, and quantified N export in drainage water, denitrification, and net N uptake by trees. Under elevated CO2, concentrations of N in the soil solution were significantly reduced. In the nutrient-rich calcareous sand, CO2 enrichment decreased N concentrations in the soil solution at all depths (–45 to –100%). In the nutrient-poor acidic loam, the negative CO2 effect was restricted to the uppermost 5 cm of the soil. Increasing the N deposition stimulated the negative impact of CO2 enrichment on soil solution N in the acidic loam at 5 cm depth from –20% at low N inputs to –70% at high N inputs. In the nutrient-rich calcareous sand, N additions did not influence the CO2 effect on soil solution N. Accumulation of N by IER bags, which were installed under individual trees, was decreased at high CO2 levels under spruce in both soil types. Under beech, this decrease occurred only in the calcareous sand. N accumulation by IER bags was negatively correlated with current-years foliage biomass, suggesting that the reduction of soil N availability indices was related to a CO2-induced growth enhancement. However, the net N uptake by trees was not significantly increased by elevated CO2. Thus, we suppose that the reduced N concentrations in the soil solution at elevated CO2 concentrations were rather caused by an increased N immobilisation in the soil. Denitrification was not influenced by atmospheric CO2 concentrations. CO2 enrichment decreased nitrate leaching in drainage by 65%, which suggests that rising atmospheric CO2 potentially increases the N retention capacity of forest ecosystems.  相似文献   

13.
We examined the in situ CO2 gas-exchange of fruits of a tropical tree, Durio zibethinus Murray, growing in an experimental field station of the Universiti Pertanian Malaysia. Day and night dark respiration rates were exponentially related to air temperature. The temperature dependent dark respiration rate showed a clockwise loop as time progressed from morning to night, and the rate was higher in the daytime than at night. The gross photosynthetic rate was estimated by summing the rates of daytime dark respiration and net photosynthesis. Photosynthetic CO2 refixation, which is defined as the ratio of gross photosynthetic rate to dark respiration rate in the daytime, ranged between 15 and 45%. The photosynthetic CO2 refixation increased rapidly as the temperature increased in the lower range of air temperature T c (T c <28.5 °C), while it decreased gradually as the temperature increased in the higher range (T c 28.5 °C). Light dependence of photosynthetic CO2 refixation was approximated by a hyperbolic formula, where light saturation was achieved at 100 mol m–2 s–1 and the asymptotic CO2 refixation was determined to be 37.4%. The estimated gross photosynthesis and dark respiration per day were 1.15 and 4.90 g CO2 fruit–1, respectively. Thus the CO2 refixation reduced the respiration loss per day by 23%. The effect of fruit size on night respiration rate satisfied a power function, where the exponent was larger than unity.  相似文献   

14.
Summary Net annual productivity and annual carbon budgets were determined for populations of Littorella uniflora var. americana and Isoetes macrospora in a mesotrophic and oligotrophic lake in northern Wisconsin, to assess the contribution of Crassulacean Acid Metabolism (CAM) to annual productivity of the species in their natural environment. Nocturnal carbon accumulation (CAM), daytime uptake of external CO2 via the C3 mechanism, and refixation of endogenously generated CO2 from daytime respiration were the sources of carbon income. CAM activity as diurnal acid rhythms reached maxima of 89 to 182 eq·g-1 leaf fresh weight for the various populations.Maximum rates of daytime 14C uptake ranged from 0.56 to 1.46 mg C·g-1 leaf dry wt.·h-1 for the study populations. Refixation of daytime respired CO2 averaged 37% for the four populations. Carbon loss was due largely to dark respiration, during the day and night. Nocturnal carbon accumulation, daytime CO2 uptake and 24-h dark respiration were of similar magnitude, indicating dark respiration was equivalent to 50% of gross photosynthesis.Net annual production was measured for each population by following leaf turnover. Turnover rates for the Littorella populations were 1.56 and 1.72·yr-1, and for the Isoetes populations, 0.85 and 1.00·yr-1. Measured net annual productivity and calculated net annual productivity (based on carbon exchange) agreed within an average of 12% for the four populations. While CAM activity was greater for the more productive population of each species, the results suggest that the contribution of CAM to annual productivity is greater for the less productive population of each species. CAM contributed 45 to 55% of the annual carbon gain for the study populations.  相似文献   

15.
Mosier  A.R.  Morgan  J.A.  King  J.Y.  LeCain  D.  Milchunas  D.G. 《Plant and Soil》2002,240(2):201-211
In late March 1997, an open-top-chamber (OTC) CO2 enrichment study was begun in the Colorado shortgrass steppe. The main objectives of the study were to determine the effect of elevated CO2 (720 mol mol–1) on plant production, photosynthesis, and water use of this mixed C3/C4 plant community, soil nitrogen (N) and carbon (C) cycling and the impact of changes induced by CO2 on trace gas exchange. From this study, we report here our weekly measurements of CO2, CH4, NOx and N2O fluxes within control (unchambered), ambient CO2 and elevated CO2 OTCs. Soil water and temperature were measured at each flux measurement time from early April 1997, year round, through October 2000. Even though both C3 and C4 plant biomass increased under elevated CO2 and soil moisture content was typically higher than under ambient CO2 conditions, none of the trace gas fluxes were significantly altered by CO2 enrichment. Over the 43 month period of observation NOx and N2O flux averaged 4.3 and 1.7 in ambient and 4.1 and 1.7 g N m–2 hr –1 in elevated CO2 OTCs, respectively. NOx flux was negatively correlated to plant biomass production. Methane oxidation rates averaged –31 and –34 g C m–2 hr–1 and ecosystem respiration averaged 43 and 44 mg C m–2 hr–1 under ambient and elevated CO2, respectively, over the same time period.  相似文献   

16.
The effect of elevated CO2 on growth of wheat plants (Triticum aestivum cv. Minaret) and soil protozoan and bacterial populations was investigated in soil pots placed in open top chambers fumigated with ambient air or air enriched with CO2 (ambient + 320 l L–1 CO2). We harvested plants two times during the growing season and measured the biomass and the C and N content of roots and shoots. The soil was divided into bulk and rhizosphere soil and the number of bacteria (colony-forming units, CFU) and protozoa was determined. There was no effect of atmospheric CO2 content on the number of bacteria, but the total number of bacterivorous protozoa was higher in pots from the elevated CO2 treatment. This increase was mainly due to an increase in the number of protozoa in the bulk soil. Density of protozoa in the rhizosphere was not affected by elevated CO2. This suggests that the increase in protozoan numbers was a result of a general increase in rhizodeposition, presumably caused by increased root production, and not to an increased root exudation per root mass. After harvest, soil from the two treatments was incubated with and without roots and the respiration rate was estimated at intervals for 200 days. During the first 55 days, the specific root induced respiration rate was not affected by the CO2 level at which the plants had been grown, indicating that the quality of the easily decomposable components of the roots was not affected by CO2 level.  相似文献   

17.
Elevated CO2 (ambient + 35 Pa) increased shoot dry mass production in Avena fatua by 68% at maturity. This increase in shoot biomass was paralleled by an 81% increase in average net CO2 uptake (A) per unit of leaf area and a 65% increase in average A at the ecosystem level per unit of ground area. Elevated CO2 also increased ecosystem A per unit of biomass. However, the products of total leaf area and light-saturated leaf A divided by the ground surface area over time appeared to lie on a single response curve for both CO2 treatments. The approximate slope of the response suggests that the integrated light saturated capacity for leaf photosynthesis is 10-fold greater than the ecosystem rate. Ecosystem respiration (night) per unit of ground area, which includes soil and plant respiration, ranged from-20 (at day 19) to-18 (at day 40) mol m-2 s-1 for both elevated and ambient CO2 Avena. Ecosystem below-ground respiration at the time of seedling emergence was -10 mol m-2 s-1, while that occuring after shoot removal at the termination of the experiment ranged from -5 to-6 mol m-2 s-1. Hence, no significant differences between elevated and ambient CO2 treatments were found in any respiration measure on a ground area basis, though ecosystem respiration on a shoot biomass basis was clearly reduced by elevated CO2. Significant differences existed between leaf and ecosystem water flux. In general, leaf transpiration (E) decreased over the course of the experiment, possibly in response to leaf aging, while ecosystem rates of evapotranspiration (ET) remained constant, probably because falling leaf rates were offset by an increasing total leaf biomass. Transpiration was lower in plants grown at elevated CO2, though variation was high because of variability in leaf age and ambient light conditions and differences were not significant. In contrast, ecosystem evapotranspiration (ET) was significantly decreased by elevated CO2 on 5 out of 8 measurement dates. Photosynthetic water use efficiencies (A/E at the leaf level, A/ET at the ecosystem level) were increased by elevated CO2. Increases were due to both increased A at leaf and ecosystem level and decreased leaf E and ecosystem ET.  相似文献   

18.
The potentials for sequential reduction of inorganic electron acceptors and production of methane have been examined in sixteen rice soils obtained from China, the Philippines, and Italy. Methane, CO2, Fe(II), NO 3 - , SO 4 2 , pH, Eh, H2 and acetate were monitored during anaerobic incubation at 30 °C for 120 days. Based on the accumulation patterns of CO2 and CH4, the reduction process was divided into three distinct phases: (1) an initial reduction phase during which most of the inorganic electron acceptors were depleted and CO2 production was at its maximum, (2) a methanogenic phase during which CH4 production was initiated and reached its highest rate, and (3) a steady state phase with constant production rates of CH4 and CO2. The reduction phases lasted for 19 to 75 days with maximum CO2 production of 2.3 to 10.9 mol d-1 g-1 dry soil. Methane production started after 2 to 87 days and became constant after about 38--68 days (one soil >120 days). The maximum CH4 production rates ranged between 0.01 and 3.08 mol d-1 g-1. During steady state the constant CH4 and CO2 production rates varied from 0.07 to 0.30 mol d-1 g-1 and 0.02 and 0.28 mol d-1 g-1, respectively. Within the 120 d of anaerobic incubation only 6--17% of the total soil organic carbon was released into the gas phase. The gaseous carbon released consisted of 61--100% CO2, <0.1--35% CH4, and <5% nonmethane hydrocarbons. Associated with the reduction of available Fe(III) most of the CO2 was produced during the reduction phase. The electron transfer was balanced between total CO2 produced and both CH4 formed and Fe(III), sulfate and nitrate reduced. Maximum CH4 production rate (r = 0.891) and total CH4 produced (r = 0.775) correlated best with the ratio of soil nitrogen to electron acceptors. Total nitrogen content was a better indicator for available organic substrates than the total organic carbon content. The redox potential was not a good predictor of potential CH4 production. These observations indicate that the availability of degradable organic substrates mainly controls the CH4 production in the absence of inorganic electron acceptors.  相似文献   

19.
The application of calcium‐ and magnesium‐rich materials to soil, known as liming, has long been a foundation of many agro‐ecosystems worldwide because of its role in counteracting soil acidity. Although liming contributes to increased rates of respiration from soil thereby potentially reducing soils ability to act as a CO2 sink, the long‐term effects of liming on soil organic carbon (Corg) sequestration are largely unknown. Here, using data spanning 129 years of the Park Grass Experiment at Rothamsted (UK), we show net Corg sequestration measured in the 0–23 cm layer at different time intervals since 1876 was 2–20 times greater in limed than in unlimed soils. The main cause of this large Corg accrual was greater biological activity in limed soils, which despite increasing soil respiration rates, led to plant C inputs being processed and incorporated into resistant soil organo‐mineral pools. Limed organo‐mineral soils showed: (1) greater Corg content for similar plant productivity levels (i.e. hay yields); (2) higher 14C incorporation after 1950s atomic bomb testing and (3) lower C : N ratios than unlimed organo‐mineral soils, which also indicate higher microbial processing of plant C. Our results show that greater Corg sequestration in limed soils strongly reduced the global warming potential of long‐term liming to permanent grassland suggesting the net contribution of agricultural liming to global warming could be lower than previously estimated. Our study demonstrates that liming might prove to be an effective mitigation strategy, especially because liming applications can be associated with a reduced use of nitrogen fertilizer which is a key cause for increased greenhouse gas emissions from agro‐ecosystems.  相似文献   

20.
Photosynthetic carbon uptake and respiratory C release from soil are major components of the global carbon balance. The use of 13C depleted CO2 (13C = –30) in a free air CO2 enrichment experiment in a mature deciduous forest permitted us to trace the carbon transfer from tree crowns to the rhizosphere of 100–120 years old trees. During the first season of CO2 enrichment the CO2 released from soil originated substantially from concurrent assimilation. The small contribution of recent carbon in fine roots suggests a much slower fine root turnover than is often assumed.13C abundance in soil air correlated best with temperature data taken from 4 to 10 days before air sampling time and is thus rapidly available for root and rhizosphere respiration. The spatial variability of 13C in soil air showed relationships to above ground tree types such as conifers versus broad-leaved trees. Considering the complexity and strong overlap of roots from different individuals in a forest, this finding opens an exciting new possibility of associating respiration with different species. What might be seen as signal noise does in fact contain valuable information on the spatial heterogeneity of tree-soil interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号