首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have produced transgenic mice that express the prokaryotic marker protein chloramphenicol acetyltransferase under the control of regulatory sequences derived from the rat atrial natriuretic factor gene. The transgene, which contains 2.4 kilobases of the rat atrial natriuretic factor gene regulatory region, was found to direct 4000-fold more chloramphenicol acetyltransferase expression in adult atria than in ventricles. Low-level activity was also detected in the hypothalamus, demonstrating that these sequences contain the signals necessary for cardiac and central nervous system expression of the hormone atrial natriuretic factor. Developmental analyses showed early, high-level transgene expression in fetal atrial and ventricular tissues but marked reduction of ventricular transgene expression following birth. Further, the developmental expression patterns of the endogenous murine atrial natriuretic factor gene and rat transgene were found to be quite distinct. Although both the rat and mouse atrial natriuretic factor genes are activated early in embryogenesis, perinatal ventricular expression appears to differ in these two rodent species. The transgene is expressed in a pattern analogous to the neonatal rat rather than the endogenous murine gene. These studies demonstrate that the cis-acting signals required for correct tissue specificity and developmental regulation of the rat atrial natriuretic factor gene are encoded in this 2.4-kilobase fragment and that these sequences act in a dominant fashion.  相似文献   

2.
The N-myc proto-oncogene is expressed in a wide range of tissues during mammalian embryogenesis. This observation, along with the oncogenic capacity of this gene, has led to the suggestion that N-myc plays an important role in early development. However, due to the complexity of the expression pattern and the difficulty of manipulating mammalian embryos, little progress has been made towards understanding the developmental function of this gene. To enable a more detailed analysis of the role of this gene in early development, a study of the Xenopus homologue of N-myc was undertaken. Xenopus N-myc cDNA clones were isolated from a neurula library using a murine N-myc probe. Analysis of the timing of expression of N-myc mRNA and of the distribution of N-myc protein during Xenopus development indicate that this gene may be playing an important role in the formation of a number of embryonic structures, including the nervous system. N-myc is initially expressed as a maternal RNA, but this mRNA is degraded by the gastrula stage of development. Zygotic expression does not commence until late neurula. Examination of the distribution of the N-myc protein by whole-mount immunohistochemistry indicates that the early embryonic expression occurs in the central nervous system, the neural crest, the somites and the epidermis. Later expression is mostly within the head and somites. Specific structures within the head that express the protein include the eye, otic vesicle, fore and hindbrain and a number of cranial nerves. The results demonstrate that while N-myc is expressed in the developing nervous system of Xenopus, the timing of expression indicates that it is unlikely to be involved in regulation of the very first stages of neurogenesis.  相似文献   

3.
4.
5.
Identification of gene function has often relied on isolation of mutant cells in which expression of the gene was inactivated. Gene targeting by homologous recombination in tissue culture now may provide a technology to rapidly and directly produce such mutant mammalian cells. We demonstrate that selection of embryonic stem and pre-B cell lines for expression of a promoterless construct containing murine N-myc genomic sequences fused to a gene encoding neomycin resistance allows highly efficient recovery of variants in which the endogenous N-myc gene is disrupted. The high frequency of N-myc gene disruption by this method should permit targeted disruption of both allelic N-myc copies in various cell lines to study N-myc function.  相似文献   

6.
7.
We investigated the consequences of augmented c-myc gene expression in the mammary gland of transgenic mice. For this purpose we directed the expression of a mouse c-myc transgene to the differentiating mammary epithelial cells by subjecting the protein coding region to the 5' regulatory sequences of the murine whey acidic protein gene (Wap). Analogous to the expression pattern of the endogenous Wap gene, the Wap-myc transgene is abundantly expressed in the mammary gland during lactation. The tissue-specific and hormone-dependent expression of the Wap-myc transgene results in an 80% incidence of mammary adenocarcinomas. As early as two months after the onset of Wap-myc expression, tumours occur in the mammary glands of the transgenic animals. The tumours express not only the Wap-myc transgene, but also the endogenous Wap and beta casein genes. The expression of the milk protein genes becomes independent of the lactogenic hormonal stimuli and persists even in transplanted nude mouse tumours.  相似文献   

8.
9.
10.
The developmental regulation of the human globin genes involves a key switch from fetal (gamma-) to adult (beta-) globin gene expression. It is possible to study the mechanism of this switch by expressing the human globin genes in transgenic mice. Previous work has shown that high-level expression of the human globin genes in transgenic mice requires the presence of the locus control region (LCR) upstream of the genes in the beta-globin locus. High-level, correct developmental regulation of beta-globin gene expression in transgenic mice has previously been accomplished only in 30- to 40-kb genomic constructs containing the LCR and multiple genes from the locus. This suggests that either competition for LCR sequences by other globin genes or the presence of intergenic sequences from the beta-globin locus is required to silence the beta-globin gene in embryonic life. The results presented here clearly show that the presence of the gamma-globin gene (3.3 kb) alone is sufficient to down-regulate the beta-globin gene in embryonic transgenic mice made with an LCR-gamma-beta-globin mini construct. The results also show that the gamma-globin gene is down-regulated in adult mice from most transgenic lines made with LCR-gamma-globin constructs not including the beta-globin gene, i.e., that the gamma-globin gene can be autonomously regulated. Evidence presented here suggests that a region 3' of the gamma-globin gene may be important for down-regulation in the adult. The 5'HS2 gamma en beta construct described is a suitable model for further study of the mechanism of human gamma- to beta-globin gene switching in transgenic mice.  相似文献   

11.
Expression of human IFN-gamma genomic DNA in transgenic mice   总被引:2,自引:0,他引:2  
We have introduced an 8.6-kb fragment of human genomic DNA containing the full length IFN-gamma gene into the mouse germline. The transgenic animals had no biologic or developmental defects as human IFN-gamma does not bind to the mouse IFN R. Regulation of the transgene paralleled that of the endogenous murine IFN-gamma gene in that: 1) it is not expressed constitutively in any tissue examined thus far, 2) it can be induced in thymus and spleen cells by T cell mitogens, 3) it is not expressed in B cells stimulated by LPS, and 4) it produces normal mRNA and biologically active IFN protein. Whereas expression of the transgene is likely restricted to T cells, we had observed that both fibroblasts and B cell lines could express the same DNA when transfected in vitro; this indicates that in vivo, developmental factors restrict expression of the IFN-gamma gene to T cells. These findings also indicate that the 8.6-kb fragment contains the regulatory elements necessary for normal tissue specific expression in vivo. Moreover, they indicate that the regulatory elements for this gene are completely preserved over the phylogenetic distance separating mouse and man, even though substantial drift has occurred in the structural gene, and probably in the IFN-gamma R as well.  相似文献   

12.
13.
As a first step towards understanding the molecular mechanisms through which the expression of the gene (OAT) encoding ornithine aminotransferase (OAT) is regulated in a tissue-specific manner, we have used a near full length OAT cDNA to isolate related sequences from a rat genomic DNA library. Twenty-one unique clones representing five contigs and spanning approximately 140 kb of genomic DNA were isolated and characterized. From these clones we have identified a single expressed OAT gene and three processed pseudogenes. The comparison of the EcoRI, BamHI, and HindIII fragments contained within these genomic clones with those detected in total genomic DNA by the cDNA probe suggests that essentially all of the OAT-related sequences in the rat genome have been isolated. Thus, the tissue-specific regulation of OAT gene expression appears to be effected through a single expressed gene. Data are presented which suggest that the OAT-1, OAT-2, and OAT-3 pseudogenes arose approximately 28.5, 7.3, and 25.1 Myr ago, respectively. Mutation rates are presented for each codon position of the expressed rat and human OAT genes. The region of the rat genome flanking the boundary of the OAT-3 pseudogene is of additional interest as it shares considerable identity to sequences contained within expressed genes and flanking other processed pseudogenes.  相似文献   

14.
In order to study sequences involved in the developmentally regulated and tissue-specific expression of the class I Major Histocompatibility Complex (MHC) genes, we have constructed several H-2/lacZ transgenic lines in which the 5' regulatory sequences of the H-2Kb gene are linked to the Escherichia coli beta-galactosidase (lacZ) gene. In five H-2/lacZ lines, the pattern of lacZ expression, detected histochemically varied greatly from line to line. None of the H-2/lacZ transgenes were transcribed in cells normally expressing a high level of endogenous H-2 molecules, although these H-2 regulatory sequences have been shown to be sufficient to drive tissue-specific expression of other reporter genes. Interestingly, when constructs containing 5' beta 2-microglobulin (beta 2m) regulatory sequences linked to lacZ were used to derive transgenic lines, similar results were obtained. A survey of lacZ labeling in H-2/lacZ and beta 2m/lacZ transgenic mice strongly suggests that these transgenes are very sensitive to position effect, lacZ expression being controlled by endogenous chromosomal regulatory elements specific for each insertion site. Here we describe the complex pattern of lacZ expression in the different transgenic lines during development; we discuss the unusual properties of these transgenes and underline their potential use for developmental studies and characterization of genomic sequences involved in spatiotemporal gene expression.  相似文献   

15.
A transgene with 8.4-kb of regulatory sequence from the murine IL-2 gene drives consistent expression of a green fluorescent protein (GFP) reporter gene in all cell types that normally express IL-2. However, quantitative analysis of this expression shows that different T cell subsets within the same mouse show divergent abilities to express the transgene as compared with endogenous IL-2 genes. TCR gamma delta cells, as well as alpha beta TCR-NKT cells, exhibit higher in vivo transgene expression levels than TCR alpha beta cells. This deviates from patterns of normal IL-2 expression and from expression of an IL-2-GFP knock-in. Peripheral TCR gamma delta cells accumulate GFP RNA faster than endogenous IL-2 RNA upon stimulation, whereas TCR alpha beta cells express more IL-2 than GFP RNA. In TCR gamma delta cells, IL-2-producing cells are a subset of the GFP-expressing cells, whereas in TCR alpha beta cells, endogenous IL-2 is more likely to be expressed without GFP. These results are seen in multiple independent transgenic lines and thus reflect functional properties of the transgene sequences, rather than copy number or integration site effects. The high ratio of GFP: endogenous IL-2 gene expression in transgenic TCR gamma delta cells may be explained by subset-specific IL-2 gene regulatory elements mapping outside of the 8.4-kb transgene regulatory sequence, as well as accelerated kinetics of endogenous IL-2 RNA degradation in TCR gamma delta cells. The high levels and percentages of transgene expression in thymic and splenic TCR gamma delta and NKT cells, as well as skin TCR gamma delta-dendritic epidermal T cells, indicate that the IL-2-GFP-transgenic mice may provide valuable tracers for detecting developmental and activation events in these lineages.  相似文献   

16.
The regulatory properties of mouse pancreatic amylase genes include exclusive expression in the acinar cells of the pancreas and dependence on insulin and glucocorticoids for maximal expression. We have characterized a murine pancreatic amylase gene, Amy-2.2y, whose promoter sequence is 30% divergent from those of previously sequenced amylase genes. To localize sequences required for tissue-specific and hormone-dependent activation, we established two lines of transgenic mice. The first line contained a single copy of the complete Amy-2.2y gene as well as 9 kilobases of 5'-flanking sequence and 5 kilobases of 3'-flanking sequence. The second line carried a minigene which included 208 base pairs of 5'-flanking sequence and 300 base pairs of 3'-flanking sequence. In both lines the transgene was expressed at high levels exclusively in the pancreas. Both constructs were dependent on insulin and induced by dexamethasone. Thus, the transferred genes contained the sequences required for tissue-specific and hormonally regulated expression.  相似文献   

17.
The expression of mouse embryonic U1 snRNA (mU1b) genes is subject to stage- and tissue-specific control, being restricted to early embryos and adult tissues that contain a high proportion of stem cells capable of further differentiation. To determine the mechanism of this control we have sought to distinguish between differential RNA stability and regulation of U1 gene promoter activity in several cell types. We demonstrate here that mU1b RNA can accumulate to high levels in permanently transfected mouse 3T3 and C127 fibroblast cells which normally do not express the endogenous U1b genes, and apparently can do so without significantly interfering with cell growth. Expression of transfected chimeric U1 genes in such cells is much more efficient when their promoters are derived from a constitutively expressed mU1a gene rather than from an mU1b gene. In transgenic mice, introduced U1 transgenes with an mU1b 5' flanking region are subject to normal tissue-specific control, indicating that U1b promoter activity is restricted to tissues that normally express U1b genes. Inactivation of the embryonic genes during normal differentiation is not associated with methylation of upstream CpG-rich sequences; however, in NIH 3T3 fibroblasts, the 5' flanking regions of endogenous mU1b genes are completely methylated, indicating that DNA methylation serves to imprint the inactive state of the mU1b genes in cultured cells. Based on these results, we propose that the developmental control of U1b gene expression is due to differential activity of mU1a and mU1b promoters rather than to differential stability of U1a and U1b RNAs.  相似文献   

18.
Z Larin  H Lehrach 《Genetical research》1990,56(2-3):203-208
Mammalian genetics now allows a molecular study of genomic regions previously analysed by genetic and embryological techniques. To simplify such an analysis, we have established a number of libraries of mouse DNA in Yeast Artificial Chromosome (YAC) vectors, constructed either by partial digestion with EcoRI, or by complete digestion with enzymes which cut rarely in the mammalian genome. In this paper we report the construction of complete digest libraries prepared from mouse genomic DNA using the rare cutter enzymes NotI and BssHII, and the detection of gene loci from the H-2 complex, the t-complex, and other loci from the mouse genome. Due to their large insert size, YAC clones simplify the cloning of extended regions of the mouse genome surrounding known developmental mutations and should, after introduction into the germ line, offer a high probability of correct expression of the genes contained within the cloned region. We hope that this will allow the use of YAC clones to scan regions of interest such as the t-complex for specific genes by testing DNA introduced into transgenic mice for the ability to complement mutations localised to this region.  相似文献   

19.
Isolation and expression of cDNA encoding the murine homologues of CD1.   总被引:5,自引:0,他引:5  
The cDNA encoding the murine CD1.1 and CD1.2 gene products were isolated and their complete nucleotide sequence was determined. The nucleotide sequence and genomic organization of these molecules were similar to human CD1. The sequences in the alpha 1- alpha 3 domains were almost identical to previously reported genomic clones from a different strain, indicating limited polymorphism among these molecules. The predicted amino acid sequence in the transmembrane region and in the cytoplasmic tail was identical for CD1.1 and CD1.2. The two cDNA were also homologous in the 5' untranslated region but diverged in the 3' untranslated region. In contrast to human CD1, which is expressed at high levels in thymus, the expression of CD1 message in murine thymus was not detected in either thymus leukemia Ag positive or negative strains. Cell expressing murine CD1.1 were generated after transfer of the CD1.1 cDNA into murine cell lines. Immunoprecipitation with a rat anti-mouse CD1.1 mAb showed that the transfected CD1 was expressed on the cell surface as a beta 2-microglobulin-linked heterodimer. These results demonstrate that the murine and human CD1 genes, although encoding homologous transmembrane glycoproteins, are expressed in distinct tissues and may serve different functions.  相似文献   

20.
G Kollias  N Wrighton  J Hurst  F Grosveld 《Cell》1986,46(1):89-94
We have introduced the human fetal gamma- and adult beta-globin genes into the germ line of mice. Analysis of the resulting transgenic mice shows that the human gamma-globin gene is expressed like an embryonic mouse globin gene; the human beta-globin gene is expressed (as previously shown) like an adult mouse globin gene. These results imply that the regulatory signals for tissue- and developmental stage-specific expression of the globin genes have been conserved between man and mouse but that the timing of the signals has changed. Because the two genes are expressed differently, we introduced a hybrid gamma beta-globin gene construct. The combination of the regulatory sequences resulted in the expression of the hybrid gene at all stages in all the murine erythroid tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号