首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The free form of the major lipoprotein from Escherichia coli cells envelopes has been purified to homogeneity by gentle extraction procedures and conventional chromatographic separations in a non-ionic detergent. The morphology of paracrystals obtained from homogeneous protein was investigated by low-dose electron microscopy. Electron diffraction of the paracrystals was consistent with alpha-helices arranged perpendicularly to the main cross-band with a periodicity of 20 nm.  相似文献   

2.
In the envelope of Escherichia coli, is a lipoprotein of molecular weight 7,200 as a major envelope protein. This lipoprotein was previously shown to exist in two different forms in the outer membrane of E. coli: the free form and the boundform, which is covalently linked to the peptidoglycau. The free form of the lipoprotein has been purified and paracrystallized by adding acetone to a sodium dodecyl sulfate solution in the presence of magnesium ion. The paracrystals were needle shaped. An electron micrograph of the negatively stained paracrystals showed a highly ordered ultrastructure. The chemical structure of the free form was compared with that of the bound form by (i) the amino acid composition, (ii) the fatty acid composition, and (iii) the peptide analysis after cyanogen bromide cleavage. The alpha-helical content of the free form of the lipoprotein was measured from the circular dichroism spectrum of the lipoprotein in 0.01% sodium dodecyl sulfate and found to be 87%. Using the purified lipoprotein as antigen, antiserum against the free form of the lipoprotein was obtained. Immunoprecipitation of the lipoprotein with the antiserum was found to be very specific, since only the free form of the lipoprotein was found as a major peak when the antiserum was reacted with the whole envelope proteins solubilized in 0.2% sodium dodecyl sulfate, and the immunoprecipitate thus formed was analyzed by polyacrylamide gel electrophoresis.  相似文献   

3.
Polymorphism of actin paracrystals induced by polylysine   总被引:5,自引:2,他引:3       下载免费PDF全文
We describe a method for the induction of different polymorphic forms of actin filament paracrystals. This polymorphism is probably based on differences in the stagger and/or polarity of adjacent filaments in single-layered paracrystals and by superposition of different layers in multilayered paracrystals. The helical parameters defining the filament geometry are indistinguishable for the different polymorphic forms observed and for the four different actins used. Analysis of these paracrystals, some of which are ordered to better than 2.5 nm, should provide a reference structure suitable for alignment and orientation within the actin filament of high resolution models of the actin monomer obtained from crystal data.  相似文献   

4.
The processes of tubulin paracrystal induction in Chinese hamster ovary cells treated with a Vinca alkaloid, ie, vinblastine or vincristine, and treated simultaneously with one of the Vinca alkaloids and colcemid or colchicine were followed by four different microscopic techniques, in particular by tubulin-immunofluorescence. Vinca alkaloid alone, in lower concentrations, induced basically tactoid or needle-shaped (N-shaped) paracrystals. However, the formation of crystalloid was greatly enhanced by increasing the concentration of Vinca alkaloid. Square or barrel-shaped (S-shaped) and hexagonal paracrystals were also commonly induced by simultaneous treatment with a Vinca alkaloid and colcemid or colchicine. Large rectangular paracrystals often displayed fibrillar or lamellar fine structures which ran perpendicular to the long axis but tended to cleave into fragments by spontaneous splitting. Electron micrographs revealed the fine structure of crystalloids to be aggregates of numerous filaments. The growth of paracrystals, particularly N-shaped crystals, was markedly inhibited when cells were exposed to drug(s) at a low temperature (4 degrees C). We confirmed that both N- and S-shaped paracrystals dissociated rapidly after the culture medium was replaced with fresh, drug-free medium. Glutaraldehyde-fixed paracrystals treated with RNase solution were stained with acridine orange, showing a weak orange color. Possible factors involved in the assembly and disassembly of tubulin paracrystals are discussed.  相似文献   

5.
1. The TN-T and TN-I components of troponin both interact with tropomyosin and cause its precipitation in 0.1 M KC1 at neutral pH. The precipitate contains both end-to-end and side-by-side aggregates of tropomyosin molecules. 2. The TN-T and TN-I components change the band pattern of tropomyosin paracrystals formed in MgC1(2) solutions, although in different ways. TN-T causes the formation of hexagonal net structures, double-stranded net or paracrystals which result from the collapse of the double-stranded net. TN-I at pH 7.9 causes the formation of paracrystals with a 400 A periodic band pattern and a 200 A repeat. The same band pattern can also be seen in tropomyosin paracrystals formed at pH values below 6.0. 3. The TN-C component does not precipitate tropomyosin in 0.1 M KC1. The aggregates of tropomyosin obtained with either TN-T or TN-I can be solubilized by the addition of TN-C. No interaction of TN-C was observed with tropomyosin paracrystals formed in the presence of MgC12.  相似文献   

6.
Summary Several types of unusual mitochondrial configurations were found in myocardial cells of the oyster Crassostrea virginica Gmelin. These mitochondria include, in order of frequency, prismatic cristae, filamentous paracrystals in honeycomb and herringbone configurations, and paracrystals composed of rows of electron dense particles. The long, parallel, evenly spaced prismatic cristae are square or rhomboidal in cross section. In the space between the prismatic cristae are rodlike structures (4–6 nm in diameter) that are regularly spaced about 12nm apart and appear to pass between adjacent cristae. Filamentous paracrystals are observed in slender, elongated mitochondria. The filament spacing and form of these paracrystals suggest that they are composed of the intercristal rods. Alternatively, filamentous paracrystals might be tangential sections of prismatic cristae and intercristal rods. Particulate paracrystals which consist of dense lines or rows of particles are the least frequent type of unusual configuration. The particles are triangular, possibly pyramidal, in shape; their bases are 10–12 nm thick and repeat in rows every 17–18 nm. There is a close association between particulate paracrystals and prismatic cristae plus intercristal rods. Although similar mitochondrial configurations have been associated with disease or altered metabolism in a number of species, we have found no such association in the oyster as yet.Supported in part by the Mississippi-Alabama Sea Grant Consortium, through NOAA, Dept. of Commerce under grant no. NA 79AA-D-0049We wish to thank Ms. Barbara M. Hyde, Ms. Patricia A. Vermiere and Mr. Robert Allen for their technical assistance  相似文献   

7.
H-protein is a component of the thick filaments of skeletal myofibrils. Its effects on the assembly of myosin into filaments and on the formation of light meromyosin (LMM) paracrystals at low ionic strength have been investigated. H-protein reduced the turbidities of myosin filament and LMM paracrystal suspensions. Electron microscopic observation showed that the appearances of the filaments prepared in the presence and absence of H-protein were different. The filament length was not substantially changed by H-protein, but the diameter of the myosin filament was markedly reduced. H-protein bound to LMM and co-sedimented with it at low ionic strength upon centrifugation. Two types of paracrystals, spindle-shaped and sheet-like, were observed in LMM suspensions. H-protein altered the structure of the LMM paracrystals, especially the spindle-shaped ones. The thickness of the spindle-shaped paracrystals was reduced when H-protein was present during LMM paracrystal formation. On the other hand, periodic features along the long axis of the sheet-like paracrystals were retained even at high ratios of H-protein to LMM. However, there were fewer sheet-like paracrystals in the LMM suspensions containing H-protein than in the control. These results suggest that H-protein interferes with self-association of myosin molecule into filaments due to its binding to the tail portion of the myosin. However, H-protein does not have a length-determining effect on the formation of myosin filaments.  相似文献   

8.
Summary— The pH-related change in morphology of vinblastine (VLB)-induced paracrystals formed in Chinese hamster ovary (CHO) cells was examined immunohistochemically in order to determine both the mechanism of tubulin crystallization and the influence of acidic pHs on cytoskeletal microtubules. Lowering the extracellular pH (pHe) rapidly reduced the intracellular pH (pHi) in CHO cells. Lowering the pHi to near the neutral range significantly accelerated the growth of VLB-induced paracrystals, compared to that of paracrystals formed at a physiological pHe. However, further cytoplasmic acidification caused by the addition of sodium azide into the culture medium induced the disappearance of typical paracrystals and the appearance of a highly organized meshwork of tubulin appearing as short, thick filaments at the light microscopic level. Treatments using different concentrations of VLB at different pHe's showed that low pHi's (6.7 and 6.3) suppressed paracrystal-formation at lower concentrations of VLB (5×10?6 M and 10?5 M). At higher concentrations of VLB (5×10?5 M and 10?4 M), only short filaments were formed at pHi 6. 3. Electron microscopy revealed that the filaments had a ladder-like structure probably consisting of a stacked series of fused rings. This indicates that paracrystals may be modified by extremely low pH. These results show that paracrystals are unstable in living cells and that their formation is regulated by environmental pH.  相似文献   

9.
Electron microscopic investigations on the foraminifer Allogromia laticollaris showed that after treatment with 10(-3) M vinblastine tubulin paracrystals can be demonstrated in intermitotic nuclei. As these paracrystals are either membrane coated or lie free in the karyoplasm, and as in the perinuclear cytoplasm, membrane coated paracrystals can be demonstrated as well, it is assumed that the cytoplasmic tubulin which is composing the intranuclear division spindle can transverse the intact nuclear envelope via vesicle transport.  相似文献   

10.
Negatively stained images of divalent cation-induced tropomyosin paracrystals show polymorphic patterns which are almost bipolar. Although these bipolar forms are naturally due to antiparallel arrays of molecules, the precise molecular arrangements have not been clarified yet except in the case of one type of these polymorphic paracrystals by Stewart and McLachlan [(1976) J. Mol. Biol. 103, 251--269]. In the previous paper we showed that the lead-induced polar paracrystal is a parallel and in-register array of tropomyosin molecules. Moreover, we have made it possible to locate a given residue on the staining pattern. By overlapping two photographic transparencies of the polar paracrystal antiparallel, directly observed images of polymorphic bipolar paracrystals could be synthesized photographically with fidelity. The overlap length between N-terminals of antiparallel pairs of molecules could be easily determined without any assumptions. Next, we considered the stabilizing forces involved in the morphogenesis of such polymorphic paracrystals. The cation-bridged attractive forces already proposed by some groups were insufficient to account for the stability of some specific forms of tropomyosin paracrystals. From the primary amino acid sequence of tropomyosin, we calculated the changes of repulsive forces between the basic residues with changes of molecular overlap length between the N-terminals of antiparallel pairs. By setting the values of charge appropriately, we could account well for the stability of the polymorphic structures observed by electron microscopy.  相似文献   

11.
Vinblastine has two distinct tubulin-related effects in 3T6 fibroblasts and J774.2 macrophages. It depolymerizes microtubules and it induces the formation of paracrystals in the cytoplasm. These paracrystals are retained in cytoskeletons prepared by Triton extraction and are stable to treatment with calcium. The direct addition of vinblastine to cytoskeletons does not alter the organization of microtubules. The two effects of vinblastine are concentration-dependent, as assayed by binding of [3H]taxol and tubulin immunofluorescence. At low concentrations, vinblastine depolymerizes cellular microtubules; at high concentrations the drug induces the formation of paracrystals.  相似文献   

12.
Using the system of F-actin paracrystals, we have obtained electron microscopic evidence that projectin from synchronous flight muscles of Locusta migratoria binds to actin filaments in the same fashion as skeletal titin. Control actin paracrystals formed in the presence of Mg(2+) ions have great width and length and blunted ends. The addition of either projectin or titin results in disruption of compact ordered packing of F-actin in paracrystals and leads to the formation of loose filament bundles with smaller diameters and tapered ends. It is also accompanied with the appearance of individual actin filaments in considerable amounts. The effect becomes more pronounced with the increase in concentrations of added projectin or titin. Possible physiological implications of projectin-actin interactions are discussed.  相似文献   

13.
Actin paracrystal induction by forskolin and by db-cAMP in CHO cells   总被引:1,自引:0,他引:1  
Forskolin, a hypotensive diterpine, is assumed to be a potent activator of adenylate cyclase leading to increased levels of cAMP. When this drug is used at 10(-5) M on CHO-C14 cells in culture, it induces within 15 min actin paracrystals in all cells. At this time the paracrystals are mostly situated close to the cell periphery. Electron microscopy (EM) shows structures typical of actin paracrystals. Scanning electron microscopy (SEM) reveals a reduction in surface microvilli and blebs. Identical results can be obtained by adding 1 mM db-cAMP to the culture medium directly. The paracrystals are observed within 15 min and thus represent one of the earliest ultrastructural changes so far described for reverse transformation of CHO cells by db-cAMP. The microtubular and vimentin profiles appear unchanged by forskolin treatment of CHO-K1 cells. Out of currently unknown reasons forskolin does not induce the actin transformation in several other commonly used cell lines.  相似文献   

14.
Light meromyosin paracrystals have been studied by electron microscopy combined with optical diffraction in order to understand how the tails of the myosin molecules might pack in the backbone of muscle thick filaments. The forms of paracrystal investigated were all spindle-shaped structures with an axial periodicity of either 43 nm or 14.3 nm or hybrids involving aspects of both repeats. Transverse sections show that they are not smooth but polygonal in outline. Analysis of the band patterns in negatively stained specimens indicates that the molecular arrangement in the paracrystals involves both parallel and antiparallel interactions. A parallel axial displacement of the molecules by 43 nm is intrinsic to all forms of paracrystal investigated. The principal antiparallel overlap between molecules appears to be one of 84 nm, and it is suggested that an antiparallel dimer is the structural unit in the paracrystals. The role of the interactions leading to these displacements in the formation of the thick filament backbone is discussed.  相似文献   

15.
Xenopus lamin A and a lamin A mutant lacking the complete 280 amino acid long carboxy-terminal tail were expressed in bacteria and purified from inclusion bodies. Electron microscopic analysis of lamin A dimers revealed that the carboxy-terminal 280 amino acids correspond to the globular domain seen in rotary-shadowed wild-type lamin and that the rodlike domain consists of the short non-helical amino terminus and the alpha-helical region. During reconstitution lamin A dimers first formed polar head to tail aggregates which then associated laterally resulting in paracrystals with periodic repeats of 25 nm. In the mutant, the longitudinal and lateral association of dimers had not been influenced, however, periodic repeats were absent in the filament bundles formed. Thus our data clearly demonstrate that carboxy-terminal tails are localized in light-stained regions of negatively stained paracrystals and that they are responsible for the alternating light dark staining of paracrystals. Fibrils, 2 to 3 nm thick, were a common structural element of paracrystals and filament bundles.  相似文献   

16.
Tryptic and chymotryptic light meromyosin paracrystals from red and cardiac muscles of rabbit show a negative and positive staining pattern with uranyl acetate and phosphotungstate that sharply differs from that of white muscle light meromyosin paracrystals. The main periodicity of about 430 A is the same regardless of the source of light meromyosin. The results are discussed in terms of the molecular structure and the functional properties of various myosins.  相似文献   

17.
Previous studies on tau protein showed that the protein forms paracrystals which are unusually elastic. The paracrystals were obtained from a mixture of isoforms prepared from brain tissue, and the protein was in a mixed state of phosphorylation. Subsequently we showed that the structure and elasticity was related to the state of phosphorylation. However, this left open the possibility that the isotype composition played a role as well. We have now addressed this question by separating the individual isoforms and analyzing their structure. The paracrystals from all isoforms are similar to one another and to those of the native mixture; the same holds for the elasticity. Thus the tendency to self-associate, the apparent structure, and the elasticity are determined by those regions of tau which all isoforms have in common. In addition we compare tau paracrystals from three different sources. Apart from the porcine brain tau described earlier we have prepared paracrystals from bovine brain tau because its sequence is now known (Himmler et al., 1989). The structure and elasticity is indistinguishable from porcine tau. Second, we have prepared tau from avian erythrocytes where it is found in the membrane-associated marginal band microtubules ( Murphy and Wallis, 1985). Its isoform composition differs from mammalian brain tau, but again the structural properties are similar. A notable difference is that the shift in electrophoretic mobility induced by phosphorylation with CaM kinase, typical of all brain tau isotypes, is not found in the marginal band tau. Tau shows a strong tendency of longitudinal self-association which is apparent not only in the crystallization buffer but also in standard microtubule reassembly buffer. This leads to rod-like tau oligomers, fibers, and three-dimensional networks. This property, coupled with tau's elasticity, suggests a role in the organization of the cytoplasm beyond the stabilization of microtubules.  相似文献   

18.
Atomic networks of as-implanted and relaxed amorphous silicon solids were simulated using a Hybrid Reverse Monte Carlo algorithm constrained by high-resolution electron diffraction data. No significant structural distinction was observed between the two forms of amorphous silicon. A nanometer-sized crystallite was inserted into the as-implanted structure, to model medium-range order due to paracrystals, and the atomic network was energetically relaxed whilst maintaining consistency with experiment. Experimental pair–pair correlations were then simulated using a stochastic generalised Debye sum of fourth order. The idealised pair–pair correlation calculations were not able to readily distinguish between models with and without paracrystals. On the other hand, wave mechanical simulations surprisingly showed that paracrystals could be experimentally imaged using phase contrast transmission electron microscopy and/or nanoscale electron diffraction on a contemporary aberration-corrected microscope.  相似文献   

19.
We examined the axial repeats in electron micrographs of three types of negatively stained paracrystals (two tactoid- and one sheet-like type) of rabbit light meromyosin (LMM) and its complex with C-protein characterized previously by similar axial period of about 43.0 nm. Assuming for the axial repeat in type II tactoids the value of 42.93 +/- 0.05 nm as it was determined by X-ray diffraction technique (Yagi and Offer 1981), we found average axial repeats in type I tactoid and in sheet-like paracrystal of 42.93 +/- 0.75 nm and 43.50 +/- 0.62 nm respectively. Analyzing the micrographs where the two types paracrystals are located side-by-side we determined rather accurately the average ratio of axial repeat in sheet-like paracrystal to that in type I tactoid (1.013 +/- 0.002). Taking 42.93 nm as the axial repeat in type I tactoid, the axial repeat in sheet-like paracrystal was found to be 43.50 +/- 0.08 nm. C-protein binds to LMM with the period of the underlying LMM paracrystals and independently of the value of their axial repeats. Two different axial repeats (42.9 nm and 43.5 nm) revealed for LMM paracrystals in this study precisely coincide with the average repeat periods of myosin crossbridges along the thick filaments found for different physiological states of skeletal muscles (Lednev and Kornev 1987). Molecular basis for the appearance of two structural states in LMM paracrystals and in the shafts of thick filaments are discussed.  相似文献   

20.
Summary Vinblastine sulfate was administered to adult rats by intravenous injections. Kidney cortex was fixed after 1, 2, or 5 hours of treatment and studied by routine transmission electron microscopy.In control animals, cells of distal convoluted tubules possessed numerous microtubules with an average diameter of 280 Å. In treated animals, the microtubules of these cells were reduced in number, and paracrystalline inclusions characteristic of vinblastine treatment were common. Macrotubules (570 Å average diameter) were also present and often were seen close to, or in apparent continuity with, paracrystals. Since the work of others indicates that vinblastine-induced paracrystals contain microtubular protein (tubulin), observation of continuities between paracrystals and macrotubules is interpreted as evidence that macrotubules are also composed of tubulin and that macrotubules may become incorporated into paracrystals.Unlike the ordinary microtubules of cells of the distal tubules, vinblastine-induced macrotubules exhibited cross-striations in longitudinal view and subunit structure in cross section.Macrotubules and paracrystals were also observed in cells of the proximal convoluted tubule, mesangium, glomerular endothelium, parietal epithelium of Bowman's capsule, and visceral epithelium of Bowman's capsule. Continuities between macrotubules and paracrystals, although relatively common in occurrence in distal tubule cells, were only rarely seen in the other kinds of cells examined. Acknowledgements. The authors gratefully acknowledge the technical help of Mrs. Dawn Bockus, Miss Judy Groombridge, Mrs. Jeri Hunter, Mrs. Jolan Pinter, Miss Franque Remington, Miss Mary Stewart, Miss Louise Young, Mr. Reginald Pickering, and Mr. W. J. Masten. This research was supported by N.I.H. grants AM 16 236, GM 00 100, and HE 03 174, by Institutional Cancer Grant IN-26L from the American Cancer Society, and by the Graduate School Research Fund of the University of Washington.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号