首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Stimulation of Ehrlich ascites tumor cells with leukotriene D4 (LTD4) within the concentration range 1–100 nm leads to a concentration-dependent, transient increase in the intracellular, free Ca2+ concentration, [Ca2+] i . The Ca2+ peak time, i.e., the time between addition of LTD4 and the highest measured [Ca2+] i value, is in the range 0.20 to 0.21 min in ten out of fourteen independent experiments. After addition of a saturating concentration of LTD4 (100 nm), the highest measured increase in [Ca2+] i in Ehrlich cells suspended in Ca2+-containing medium is 260 ± 14 nm and the EC50 value for LTD4-induced Ca2+ mobilization is estimated at 10 nm. Neither the peptido-leukotrienes LTC4 and LTE4 nor LTB4 are able to mimic or block the LTD4-induced Ca2+ mobilization, hence the receptor is specific for LTD4. Removal of Ca2+ from the experimental buffer significantly reduces the size of the LTD4-induced increase in [Ca2+] i . Furthermore, depletion of the intracellular Ins(1,4,5)P3-sensitive Ca2+ stores by addition of the ER-Ca2+-ATPase inhibitor thapsigargin also reduces the size of the LTD4-induced increase in [Ca2+] i in Ehrlich cells suspended in Ca2+-containing medium, and completely abolishes the LTD4-induced increase in [Ca2+] i in Ehrlich cells suspended in Ca2+-free medium containing EGTA. Thus, the LTD4-induced increase in [Ca2+] i in Ehrlich cells involves an influx of Ca2+ from the extracellular compartment as well as a release of Ca2+ from intracellular Ins(1,4,5)P3-sensitive stores. The Ca2+ peak times for the LTD4-induced Ca2+ influx and for the LTD4-induced Ca2+ release are recorded in the time range 0.20 to 0.21 min in four out of five experiments and in the time range 0.34 to 0.35 min in six out of eight experiments, respectively. Stimulation with LTD4 also induces a transient increase in Ins(1,4,5)P3 generation in the Ehrlich cells, and the Ins(1,4,5)P3 peak time is recorded in the time range 0.27 to 0.30 min. Thus, the Ins(1,4,5)P3 content seems to increase before the LTD4-induced Ca2+ release from the intracellular stores but after the LTD4-induced Ca2+ influx. Inhibition of phospholipase C by preincubation with U73122 abolishes the LTD4-induced increase in Ins(1,4,5)P3 as well as the LTD4-induced increase in [Ca2+] i , indicating that a U73122-sensitive phospholipase C is involved in the LTD4-induced Ca2+ mobilization in Ehrlich cells. The LTD4-induced Ca2+ influx is insensitive to verapamil, gadolinium and SK&F 96365, suggesting that the LTD4-activated Ca2+ channel in Ehrlich cells is neither voltage gated nor stretch activated and most probably not receptor operated. In conclusion, LTD4 acts in the Ehrlich cells via a specific receptor for LTD4, which upon stimulation initiates an influx of Ca2+, through yet unidentified Ca2+ channels, and an activation of a U73122-sensitive phospholipase C, Ins(1,4,5)P3 formation and finally release of Ca2+ from the intracellular Ins(1,4,5)P3-sensitive stores. Received: 9 February 1996/Revised: 15 August 1996  相似文献   

4.
5.
6.
7.
8.
9.
10.
Leukotriene A4 hydrolase activity of human airway epithelial cells   总被引:2,自引:0,他引:2  
Human tracheal epithelial cells were incubated with LTA4 and metabolic products were identified in extracted supernatants by high pressure liquid chromatography, ultraviolet spectroscopy, and gas chromatography-mass spectrometry. In the presence of epithelial cells, LTA4 was converted to LTB4, but not to LTC4 or LTD4. Maximum LTB4 was released at an LTA4 concentration of 3 microM and had occurred by 30 min. LTB4 release was increased in the presence of albumin, but was not affected by extracellular calcium or A23187. This LTA4 hydrolase activity had a slower time course and could not be clearly inactivated by repeated exposure to substrate as is the case for previously described LTA4 hydrolase enzymes. This hydrolase appears to have novel biochemical characteristics.  相似文献   

11.
12.
Voltage-activated H(+)-selective currents were studied in cultured adult rat alveolar epithelial cells and in human neutrophils using the whole-cell configuration of the patch-clamp technique. The H+ conductance, gH, although highly selective for protons, was modulated by monovalent cations. In Na+ and to a smaller extent in Li+ solutions, H+ currents were depressed substantially and the voltage dependence of activation of the gH shifted to more positive potentials, when compared with the "inert" cation tetramethylammonium (TMA+). The reversal potential of the gH, Vrev, was more positive in Na+ solutions than in inert ion solutions. Amiloride at 100 microM inhibited H+ currents in the presence of all cations studied except Li+ and Na+, in which it increased H+ currents and shifted their voltage-dependence and Vrev to more negative potentials. The more specific Na(+)-H+ exchange inhibitor dimethylamiloride (DMA) at 10 microM similarly reversed most of the suppression of the gH by Na+ and Li+. Neither 500 microM amiloride nor 200 microM DMA added internally via the pipette solution were effective. Distinct inhibition of the gH was observed with 1% [Na+]o, indicating a mechanism with high sensitivity. Finally, the effects of Na+ and their reversal by amiloride were large when the proton gradient was outward (pHo parallel pHi 7 parallel 5.5), smaller when the proton gradient was abolished (pH 7 parallel 7), and absent when the proton gradient was inward (pH 6 parallel 7). We propose that the effects of Na+ and Li+ are due to their transport by the Na(+)-H+ antiporter, which is present in both cell types studied. Electrically silent H+ efflux through the antiporter would increase pHi and possibly decrease local pHo, both of which modulate the gH in a similar manner: reducing the H+ currents at a given potential and shifting their voltage- dependence to more positive potentials. A simple diffusion model suggests that Na(+)-H+ antiport could deplete intracellular protonated buffer to the extent observed. Evidently the Na(+)-H+ antiporter functions in perfused cells, and its operation results in pH changes which can be detected using the gH as a physiological sensor. Thus, the properties of the gH can be exploited to study Na(+)-H+ antiport in single cells under controlled conditions.  相似文献   

13.
The effects of leukotriene D4 on the intracellular pH of human myelocytes, derived from cultured HL-60 cells by dimethylsulfoxide-induced differentiation, were quantified with the fluorescent indicator 2',7'-bis-(2-carboxy-ethyl)-5,6-carboxyfluorescein. Leukotriene D4, but not C4 or E4, increased intracellular pH optimally by 3 min with a half-maximal effect at 1-2 nM. The increases in intracellular pH stimulated by leukotriene D4 were prevented by pretreatment of myelocytes with leukotriene D4 but not peptide chemotactic factors. Analogs of amiloride that inhibit selectively the Na+/H+ antiport also prevented the intracellular alkalinization induced by leukotriene D4. The rate of recovery of intracellular pH after an acid load with 30 mM sodium propionate was approximately 30% higher at each level of intracellular pH for myelocytes exposed to leukotriene D4 than for those challenged in buffer alone. The increase elicited by leukotriene D4 in the adherence of myelocytic leukocytes to surfaces thus is associated with an enhanced sensitivity of the Na+/H+ antiport to intracellular pH, that is, not coupled to an earlier rise in the cytosolic level of Ca+2.  相似文献   

14.
15.
16.
We demonstrated previously that leukotriene D4 (LTD4) regulates proliferation of intestinal epithelial cells through a CysLT receptor by protein kinase C (PKC)epsilon-dependent stimulation of the mitogen-activated protein kinase ERK1/2. Our current study provides the first evidence that LTD4 can activate 90-kDa ribosomal S6 kinase (p90RSK) and cAMP-responsive element-binding protein (CREB) via pertussis-toxin-sensitive Gi protein pathways. Transfection and inhibitor experiments revealed that activation of p90RSK, but not CREB, is a PKCepsilon/Raf-1/ERK1/2-dependent process. LTD4-mediated CREB activation was not affected by expression of kinase-dead p90RSK but was abolished by transfection with the regulatory domain of PKCalpha (a specific dominant-inhibitor of PKCalpha). Kinase-negative mutants of p90RSK and CREB (K-p90RSK and K-CREB) blocked the LTD4-induced increase in cell number and DNA synthesis (thymidine incorporation). Compatible with these results, flow cytometry showed that LTD4 caused transition from the G0/G1 to the S+G2/M cell cycle phase, indicating increased proliferation. Similar treatment of cells transfected with K-p90RSK resulted in cell cycle arrest in the G0/G1 phase, consistent with a role of p90RSK in LTD4-induced proliferation. On the other hand, expression of K-CREB caused a substantial buildup in the sub-G0/G1 phase, suggesting a role for CREB in mediating LTD4-mediated survival in intestinal epithelial cells. Our results show that LTD4 regulates proliferation and survival via distinct intracellular signaling pathways in intestinal epithelial cells.  相似文献   

17.
Pretreatment of mice with leukotriene C4 (LTC4), a biological mediator that can cause marked contraction of vascular, tracheal, and bronchial smooth muscles, enhances radiation survival. Optimal protection is observed with 10 micrograms LTC4 per mouse (400 micrograms/kg body wt) administered subcutaneously 5 to 10 min prior to irradiation. Pretreatment with 10 micrograms LTC4 increases the LD50/30 from 8.36 Gy in mice receiving saline to 15.7 Gy, providing a dose reduction factor of 1.9. Enhanced survival of mice was observed with doses of 50 micrograms LTD4/mouse, but not with LTE4. Fifteen minutes after administration of 10 micrograms LTC4, the breathing rate is reduced by 33%, the blood paO2 by 20%, the paCO2 by 29%, and the HCO3- by 43%. Whole blood lactate increased by 288% at this same time. The period over which the elevation in blood lactate occurs is similar to the times for optimal radioprotection. These data coupled with the finding that protection was eliminated when irradiation occurred in an enriched oxygen atmosphere indicate that hypoxia plays a role in leukotriene C4-induced animal radiation survival. High-performance liquid chromatography and tissue distribution analyses support a role for an indirect mechanism since the highest levels of LTC4 in the tissues do not correlate with the peak time for radioprotection.  相似文献   

18.
Human glomerular epithelial cells (GECs) in culture synthesize single-chain, urokinase-type plasminogen activator (SC-uPA), tissue-type plasminogen activator (t-PA), and plasminogen activator inhibitor 1 (PAI-1) and possess specific membrane-binding sites for u-PA. Using purified 125I-alpha thrombin, we demonstrate here the presence of two populations of specific binding sites for thrombin on GECs (1.Kd = 4.3 +/- 1.0 x 10(-10) M, 5.4 +/- 1.4 x 10(4) M sites per cell, 2. Kd = 1.6 +/- 0.5 x 10(-8) M, 7.9 +/- 1.8 x 10(5) sites per cell). Purified human alpha thrombin promoted the proliferation of GECs and induced a time- and dose-dependent increase of SC-uPA, t-PA, and PAI-1 antigens released by GECs. Thrombin-mediated increase in antigen was paralleled by an increase in the levels of corresponding u-PA and PAI-1 messenger RNA. In contrast, thrombin decreased u-PA activity in conditioned medium. This discrepancy between u-PA antigen and u-PA activity was explained by a limited proteolysis of SC-uPA by thrombin, leading to a two-chain form detected by immunoblotting and that could not be activated by plasmin. Thrombin also decreased the number of u-PA binding sites on GECs (p less than 0.05) without changing receptor affinity. Hirudin inhibited the binding and the cellular effects of thrombin, whereas thrombin inactivated by diisopropylfluorophosphate had no effect, indicating that both membrane binding and catalytic activity of thrombin were required. We conclude that thrombin, through specific membrane receptors, stimulates proliferation of GECs and decreases the fibrinolytic activity of GECs both at the cell surface and in the conditioned medium. These results suggest that thrombin could be involved in the pathogenesis of extracapillary proliferation and persistency of fibrin deposits in crescentic glomerulonephritis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号