首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Globally increasing atmospheric CO2 concentrations are known to affect many aspects of plant physiology and development; however, little attention has been given to leaf and canopy optical properties. Three tropical trees in the Leguminosae, an important canopy tree family in many tropical forests, responded similarly to an experimental doubling of CO2 partial pressure with a 9–23% increase in spectral leaf reflectance to light in the visible (400–700 nm) waveband. Decreased leaf chlorophyll content under elevated CO2 may explain part of the observed increase in reflectance. However, analyses that statistically corrected for chlorophyll content effects on reflectance still indicated a significant CO2 effect. This results, in conjunction with the spectral pattern of the response, suggests that the primary mechanism is increased optical masking of chlorophyll under elevated CO2. The magnitude of the increase in leaf reflectance is sufficient to suggest that increased canopy reflectance of tropical forests (and possibly other terrestrial ecosystems) may be an important negative feedback in the response of global net radiative climate forcing to increasing atmospheric CO2.  相似文献   

2.
Field‐growing silver birch (Betula pendula Roth) clones (clone 4 and 80) were exposed to elevated CO2 and O3 in open‐top chambers for three consecutive growing seasons (1999–2001). At the beginning of the OTC experiment, all trees were 7 years old. We studied the single and interaction effects of CO2 and O3 on silver birch below‐ground carbon pools (i.e. effects on fine roots and mycorrhizas, soil microbial communities and sporocarp production) and also assessed whether there are any clonal differences in these below‐ground CO2 and O3 responses. The total mycorrhizal infection level of both clones was stimulated by elevated CO2 alone and elevated O3 alone, but not when elevated CO2 was used in fumigation in combination with elevated O3. In both clones, elevated CO2 affected negatively light brown/orange mycorrhizas, while its effect on other mycorrhizal morphotypes was negligible. Elevated O3, instead, clearly decreased the proportions of black and liver‐brown mycorrhizas and increased that of light brown/orange mycorrhizas. Elevated O3 had a tendency to decrease standing fine root mass and sporocarp production as well, both of these O3 effects mainly manifesting in clone 4 trees. CO2 and O3 treatment effects on soil microbial community composition (PLFA, 2‐ and 3‐OH‐FA profiles) were negligible, but quantitative PLFA data showed that in 2001 the PLFA fungi : bacteria‐ratio of clone 80 trees was marginally increased because of elevated CO2 treatments. This study shows that O3 effects were most clearly visible at the mycorrhizal root level and that some clonal differences in CO2 and O3 responses were observable in the below‐ground carbon pools. In conclusion, the present data suggests that CO2 effects were minor, whereas increasing tropospheric O3 levels can be an important stress factor in northern birch forests, as they might alter mycorrhizal morphotype assemblages, mycorrhizal infection rates and sporocarp production.  相似文献   

3.
In the present open‐top chamber experiment, two silver birch clones (Betula pendula Roth, clone 4 and clone 80) were exposed to elevated levels of carbon dioxide (CO2) and ozone (O3), singly and in combination, and soil CO2 efflux was measured 14 times during three consecutive growing seasons (1999–2001). In the beginning of the experiment, all experimental trees were 7 years old and during the experiment the trees were growing in sandy field soil and fertilized regularly. In general, elevated O3 caused soil CO2 efflux stimulation during most measurement days and this stimulation enhanced towards the end of the experiment. The overall soil respiration response to CO2 was dependent on the genotype, as the soil CO2 efflux below clone 80 trees was enhanced and below clone 4 trees was decreased under elevated CO2 treatments. Like the O3 impact, this clonal difference in soil respiration response to CO2 increased as the experiment progressed. Although the O3 impact did not differ significantly between clones, a significant time × clone × CO2× O3 interaction revealed that the O3‐induced stimulation of soil respiration was counteracted by elevated CO2 in clone 4 on most measurement days, whereas in clone 80, the effect of elevated CO2 and O3 in combination was almost constantly additive during the 3‐year experiment. Altogether, the root or above‐ground biomass results were only partly parallel with the observed soil CO2 efflux responses. In conclusion, our data show that O3 impacts may appear first in the below‐ground processes and that relatively long‐term O3 exposure had a cumulative effect on soil CO2 efflux. Although the soil respiration response to elevated CO2 depended on the tree genotype as a result of which the O3 stress response might vary considerably within a single tree species under elevated CO2, the present experiment nonetheless indicates that O3 stress is a significant factor affecting the carbon cycling in northern forest ecosystems.  相似文献   

4.
Abstract. There have been seven studies of canopy photosynthesis of plants grown in elevated atmospheric CO2: three of seed crops, two of forage crops and two of native plant ecosystems. Growth in elevated CO2 increased canopy photosynthesis in all cases. The relative effect of CO2 was correlated with increasing temperature: the least stimulation occurred in tundra vegetation grown at an average temperature near 10°C and the greatest in rice grown at 43°C. In soybean, effects of CO2 were greater during leaf expansion and pod fill than at other stages of crop maturation. In the longest running experiment with elevated CO2 treatment to date, monospecific stands of a C3 sedge, Scirpus olneyi (Grey), and a C4 grass, Spartina patens (Ait.) Muhl., have been exposed to twice normal ambient CO2 concentrations for four growing seasons, in open top chambers on a Chesapeake Bay salt marsh. Net ecosystem CO2 exchange per unit green biomass (NCEb) increased by an average of 48% throughout the growing season of 1988, the second year of treatment. Elevated CO2 increased net ecosystem carbon assimilation by 88% in the Scirpus olneyi community and 40% in the Spartina patens community.  相似文献   

5.
Plants of Nardus stricta growing near a cold, naturally emitting CO2 spring in Iceland were used to investigate the long-term (> 100 years) effects of elevated [CO2] on photosynthesis, biochemistry, growth and phenology in a northern grassland ecosystem. Comparisons were made between plants growing in an atmosphere naturally enriched with CO2 (≈ 790 μ mol mol–1) near the CO2 spring and plants of the same species growing in adjacent areas exposed to ambient CO2 concentrations (≈360 μ mol mol–1). Nardus stricta growing near the spring exhibited earlier senescence and reductions in photosynthetic capacity (≈25%), Rubisco content (≈26%), Rubisco activity (≈40%), Rubisco activation state (≈23%), chlorophyll content (≈33%) and leaf area index (≈22%) compared with plants growing away from the spring. The potential positive effects of elevated [CO2] on grassland ecosystems in Iceland are likely to be reduced by strong down-regulation in the photosynthetic apparatus of the abundant N. stricta species.  相似文献   

6.
Although elevated atmospheric CO2 has been shown to increase growth of tree seedlings and saplings, the response of intact forest ecosystems and established trees is unclear. We report results from the first large-scale experimental system designed to study the effects of elevated CO2 on an intact forest with the full complement of species interactions and environmental stresses. During the first year of exposure to ^ 1.5 Ë ambient CO2, canopy loblolly pine (Pinus taeda, L.) trees increased basal area growth rate by 24% but understorey trees of loblolly pine, sweetgum (Liquidambar styraciflua L.), and red maple (Acer rubrum L.) did not respond. Winged elm (Ulmus alata Michx.) had a marginally significant increase in growth rate (P = 0.069). These data suggest that this ecosystem has the capacity to respond immediately to a step increase in atmospheric CO2; however, as exposure time increases, nutrient limitations may reduce this initial growth stimulation.  相似文献   

7.
Stomatal behaviour, photosynthesis and transpiration under rising CO2   总被引:2,自引:2,他引:0  

Definitions of the variables used and the units are given in Table 1

The literature reports enormous variation between species in the extent of stomatal responses to rising CO2. This paper attempts to provide a framework within which some of this diversity can be explained. We describe the role of stomata in the short-term response of leaf gas exchange to increases in ambient CO2 concentration by developing the recently proposed stomatal model of Jarvis & Davies (1998 ). In this model stomatal conductance is correlated with the functioning of the photosynthetic system so that the effects of increases in CO2 on stomata are experienced through changes in the rate of photosynthesis in a simple and mechanistically transparent way. This model also allows us to consider the effects of evaporative demand and soil moisture availability on stomatal responses to photosynthesis and therefore provides a means of considering these additional sources of variation. We emphasize that the relationship between the rate of photosynthesis and the internal CO2 concentration and also drought will have important effects on the relative gains to be achieved under rising CO2.  

  Table 1 . Abbreviations  相似文献   


8.
1.  Applying Keeling plot techniques to derive δ13C of respiratory input in a closed non-equilibrated chamber can lead to large errors because steady-state diffusion rules are violated in a non-steady-state environment. To avoid these errors, respiratory δ13C can be derived using equilibrated closed chambers.
2.  We introduce a new method to obtain stem respired CO2δ13C (δst - r) with closed equilibrated stem chambers (E-SC). We present a theoretical model describing the equilibration process, test the model against field data and find excellent agreement. The method is further tested by comparing it with closed non-equilibrated stem chambers (NE-SC); we found no difference between these methods.
3.  Our theoretical model to describe CO2 diffusion from the respiratory pool into the chamber and the equation to derive the δ13C of the efflux are general. They could be applied to other ecosystem components (e.g. soils).
4.  Our method is easy to implement, cost effective, minimizes sources of error and allows for rigorous leak detection. One major limitation is its inability to detect rapid change; the equilibration process requires 15 ± 2 h. A second limitation is that it cannot be used for species that produce abundant pitch at sites of stem wounding (e.g. Pseudotsuga menziesii ).
5.  Investigating δ13C of CO2 respired by different ecosystem components is necessary to interpret δ13C of ecosystem respiration. This parameter has major implications with respect to global carbon cycle science.  相似文献   

9.
10.
11.
The atmospheric CO2 concentration has increased from the pre-industrial concentration of about 280 μmol mol−1 to its present concentration of over 350 μmol mol−1, and continues to increase. As the rate of photosynthesis in C3 plants is strongly dependent on CO2 concentration, this should have a marked effect on photosynthesis, and hence on plant growth and productivity. The magnitude of photo-synthetic responses can be calculated based on the well-developed theory of photosynthetic response to intercellular CO2 concentration. A simple biochemically based model of photosynthesis was coupled to a model of stomatal conductance to calculate photosynthetic responses to ambient CO2 concentration. In the combined model, photosynthesis was much more responsive to CO2 at high than at low temperatures. At 350 μmol mol−1, photosynthesis at 35°C reached 51% of the rate that would have been possible with non-limiting CO2, whereas at 5°C, 77% of the CO2 non-limited rate was attained. Relative CO2 sensitivity also became smaller at elevated CO2, as CO2 concentration increased towards saturation. As photosynthesis was far from being saturated at the current ambient CO2 concentration, considerable further gains in photosynthesis were predicted through continuing increases in CO2 concentration. The strong interaction with temperature also leads to photosynthesis in different global regions experiencing very different sensitivities to increasing CO2 concentrations.  相似文献   

12.
13.
Net CO2 exchange rates (CERs) were measured in seedlings of two loblotly pine ( Pinus taeda L.) families following 6- or 13-week exposures to ozone (charcoalfiltered or ambient air + O3) and acid rain treatments (pH 3.3, 4.5 and 5.2). Ozone exposures (14 or 170 nl l−1) were made in open-top chambers, and in continously stirred tank reactors (14, 160 or 320 nl l−1) located in the field and laboratory, respectively. The CERs of whole shoots were measured in an open infrared gas analysis system at 6 levels of photosynthetic photon flux density (0, 33, 60, 410, 800 and 1660 μmol m−2 s−1). Treatment effects were not consistent between field- and laboratory-exposed seedlings. Ozone-treated field seedlings exhibited statistically significant reductions in light-saturated CER of 12.5 and 25% when measured at 6 and 13 weeks, respectively. Laboratory seedlings exhibited mixed responses to O3, with one family showing reduced CER only after 6 weeks of O3 exposure and the other only after 13 weeks (O3 >160 nl l−1 for both). After 13 weeks of exposure, pH 3.3, and 4.5 rain treatments enhanced light-saturated CER by an average of 52% over that observed in seedlings exposed to the pH 5.2 treatment. Enhanced CERs due to acid rain were of the same magnitude (3–5 μmol CO2g−1 s−1) as ozone-induced CER reductions. No differences in dark respiration were detected between treatments. Although ozone and acid rain treatments altered seedling CER, the differences were not translated into altered final plant dry weights over the 13-week exposure period.  相似文献   

14.
15.
The interactive effects of ozone and light on leaf structure, carbon dioxide uptake and short-term carbon allocation of sugar maple ( Acer saccharum Marsh.) seedlings were examined using gas exchange measurements and 14C-macroautoradiographic techniques. Two-year-old sugar maple seedlings were fumigated from budbreak for 5 months with ambient or 3 × ambient ozone in open-top chambers, receiving either 35% (high light) or 15% (low light) of full sunlight. Ozone accelerated leaf senescence, and reduced net photosynthesis, 14CO2 uptake and stomatal conductance, with the effects being most pronounced under low light. The proportion of intercellular space increased in leaves of seedlings grown under elevated ozone and low light, possibly enhancing the susceptibility of mesophyll cells to ozone by increasing the cumulative dose per mesophyll cell. Indeed, damage to spongy mesophyll cells in the elevated ozone × low light treatment was especially frequent. 14C macroautoradioraphy revealed heterogeneous uptake of 14CO2 in well defined areole regions, suggesting patchy stomatal behaviour in all treatments. However, in seedlings grown under elevated ozone and low light, the highest 14CO2 uptake occurred along larger veins, while interveinal regions exhibited little or no uptake. Although visible symptoms of ozone injury were not apparent in these seedlings, the cellular damage, reduced photosynthetic rates and reduced whole-leaf chlorophyll levels corroborate the visual scaling of whole-plant senescence, suggesting that the ozone × low light treatment accelerated senescence or senescence-like injury in sugar maple.  相似文献   

16.
CO2 uptake and transport in leaf mesophyll cells   总被引:1,自引:3,他引:1  
Abstract The acquisition of inorganic carbon for photosynthetic assimilation by leaf mesophyll cells and chloroplasts is discussed with particular reference to membrane permeation of CO2 and HCO?3. Experimental evidence indicates that at the apoplast pH normally experienced by leaf mesophyll cells (pH 6–7) CO2 is the principal species of inorganic carbon taken up. Uptake of HCO?3 may also occur under certain circumstances (i.e. pH 8.5), but its contribution to the net flux of inorganic carbon is small and HCO?3 uptake does not function as a CO2-concentrating mechanism. Similarly, CO2 rather than HCO?3 appears to be the species of inorganic carbon which permeates the chloroplast envelope. In contrast to many C3 aquatic plants and C4 plants, C3 terrestrial plants lack specialized mechanisms for the acquisition and transport of inorganic carbon from the intercellular environment to the site of photosynthetic carboxylation, but rely upon the diffusive uptake of CO2.  相似文献   

17.
Naturally regenerated Scots pines (Pinus sylvestris L.), aged 28–30 years old, were grown in open-top chambers and subjected in situ to three ozone (O3) regimes, two concentrations of CO2, and a combination of O3 and CO2 treatments From 15 April to 15 September for two growing seasons (1994 and 1995). The gas exchanges of current-year and 1-year-old shoots were measured, along with the nitrogen content of needles. In order to investigate the factors underlying modifications in photosynthesis, five parameters linked to photosynthetic performance and three to stomatal conductance were determined. Elevated O3 concentrations led to a significant decline in the CO2 compensation point (Г*), maximum RuP2-saturated rate of carboxylation (Vcmax), maximum rate of electron transport (Jmax), maximum stomatal conductance (gsmax), and sensitivity of stomatal conductance to changes in leaf-to-air vapour pressure difference (?gs/?Dv) in both shoot-age classes. However, the effect of elevated O3 concentrations on the respiration rate in light (Rd) was dependent on shoot age. Elevated CO2(700 μmol mol?1) significantly decreased Jmax and gsmax but increased Rd in 1-year-old shoots and the ?gs/?Dv in both shoot-age classes. The interactive effects of O3 and CO2 on some key parameters (e.g. Vcmax and Jmax) were significant. This may be closely related to regulation of the maximum stomatal conductance and stomatal sensitivity induced by elevated CO2. As a consequence, the injury induced by O3 was reduced through decreased ozone uptake in 1-year-old shoots, but not in the current-year shoots. Compared to ambient O3 concentration, reduced O3 concentrations (charcoal-filtered air) did not lead to significant changes in any of the measured parameters. Compared to the control treatment, calculations showed that elevated O3 concentrations decreased the apparent quantum yield by 15% and by 18%, and the maximum rate of photosynthesis by 21% and by 29% in the current-year and 1-year-old shoots, respectively. Changes in the nitrogen content of needles resulting from the various treatments were associated with modifications in photosynthetic components.  相似文献   

18.
CO2 enrichment of soybeans. Effects of leaf/pod ratio   总被引:2,自引:0,他引:2  
The effect of varying leaf number on response of soybean ( Glycine max (L.) Merr. cv. Fiskeby V) to CO2 enrichment was studied. Plants were trimmed at pod set to 15 pods and 1 or 3 leaves (15:1 and 5:1 pod/leaf ratio) and placed in 350 or 1000 μl/l CO2 growth chambers. Photosynthetic rates and dry weights were measured 6 times in all plants at each CO2 concentration over a period of 39 days. Measured at treatment CO2 concentration, photosynthetic rates deelined rapidly in enriched plants, but remained higher than those of non-enriched plants. When all plants were measured at the same CO2 concentration, for most sampling dates, neither growth, CO2 concentration or pod/leaf ratio significantly affected rates of photosynthesis per unit area of comparable leaves. CO2 enrichment significantly increased total weights and pod weights in 15:1 but not 5:1 pod/leaf ratio plants. Plants with a 5:1 pod/leaf ratio had significantly higher total and pod weights than 15:1 ratio plants. Both the photosynthesis and dry weight data suggest that plants in the 5:1 ratio enriched treatment were sink-limited, but plants in all other treatments were source limited.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号