首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The forward and reverse rate constants involved in carbamylation, activation, carboxylation, and inhibition of D-ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) have been estimated by a new technique of simultaneous non-linear regression of a differential equation kinetic model to multiple experimental data. Parameters predicted by the model fitted to data from purified spinach enzyme in vitro included binding affinity constants for non-substrate CO2 and Mg2+ of 200+/-80 microM and 700+/-200 microM, respectively, as well as a turnover number (k(cat)) of 3.3+/-0.5 s(-1), a Michaelis half-saturation constant for carboxylation (K(M,C)) of 10+/-4 microM and a Michaelis constant for RuBP binding (K(M,RuBP)) of 1.5+/-0.5 microM. These and other constants agree well with previously measured values where they exist. The model is then used to show that slow inactivation of RuBisCO (fallover) in oxygen-free conditions at low concentrations of CO2 and Mg2+ is due to decarbamylation and binding of RuBP to uncarbamylated enzyme. In spite of RuBP binding more tightly to uncarbamylated enzyme than to the activated form, RuBisCO is activated at high concentrations of CO2 and Mg2+. This apparent paradox is resolved by considering activation kinetics and the fact that while RuBP binds tightly but slowly to uncarbamylated enzyme, it binds fast and loosely to activated enzyme. This modelling technique is presented as a new method for determining multiple kinetic data simultaneously from a limited experimental data set. The method can be used to compare the properties of RuBisCO from different species quickly and easily.  相似文献   

2.
Hydrolysis of acetyl phosphate is inhibited by high concentrations of Pi and MgCl2, probably due to an increase in the steady-state level of phosphoenzyme formed from Pi in the medium. A dual effect of ADP during steady-state hydrolysis of acetyl phosphate was observed. ADP inhibited hydrolysis in the presence of 5 mM MgCl2 and no added Pi, whereas it stimulated hydrolysis when phosphoenzyme formation by Pi was favored by including 6 mM Pi and 20 mM MgCl2 in the assay medium. ATP inhibited acetyl phosphate hydrolysis in both of these assay media. When phosphoenzyme formation by Pi in the presence of acetyl phosphate was stimulated at Ca2+ concentrations sufficient to saturate the low-affinity Ca2+-binding sites, ADP stimulated acetyl phosphate hydrolysis and also promoted ATP synthesis by reversal of the catalytic cycle. The rate of ATP synthesis was dependent on ADP, Pi and Ca2+. Phosphoenzyme formation by Pi and MgCl2, whether in the absence of Ca2+ and acetyl phosphate, or during acetyl phosphate hydrolysis, was inhibited by ADP and ATP. These results suggest that ADP interacts with different intermediates of the catalytic cycle and that expression of inhibition or activation of acetyl phosphate hydrolysis depends on the steady-state level of phosphoenzyme formed by Pi.  相似文献   

3.
Inorganic pyrophosphatase must bind two phosphate molecules in order to catalyze pyrophosphate synthesis. In this report it is shown that Pi causes marked effect on the absorption spectrum of baker's yeast inorganic pyrophosphatase and this effect can be used to analyze Pi binding to this enzyme. A series of absorbance versus Pi concentration curves in the presence of 0.5-20 mM free Mg2+ were obtained at pH 7.2 and computer-fitted to 19 models. The dissociation constant of magnesium phosphate (8.5 +/- 0.4 mM) used in this analysis was measured with a Mg2+-sensitive electrode. The best model implies successive binding of two magnesium phosphate molecules or random-order binding of magnesium phosphate and free phosphate molecules. The first route predominates at physiological concentrations of Mg2+. The Pi-inhibition pattern of pyrophosphate hydrolysis confirmed that Pi adds to the active site and provided further evidence for the existence of an activating Pi-binding site. The possibility is raised that the pathways of pyrophosphate synthesis and hydrolysis by inorganic pyrophosphatase may differ in the sense that the binding of the fourth metal ion/subunit may facilitate the synthesis and inhibit the hydrolysis.  相似文献   

4.
The interplay of inorganic phosphate (Pi) with other ligands such as Mg(2+), ADP, ATP, and Ca(2+) on the activation of 2-oxoglutarate dehydrogenase complex (2-OGDH) in both isolated enzyme complex and mitochondrial extracts was examined. Pi alone activated the enzyme, following biphasic kinetics with high (K(0.5) = 1.96+/-0.42 mM) and low (K(0.5) = 9.8+/-0.4 mM) affinity components for Pi. The activation by Pi was highly pH-dependent; it increased when the pH raised from 7.1 to 7.6, but it was negligible at pH values below 7.1. Mg-Pi and Mg-ADP, but not Mg-ATP, were more potent activators of 2-OGDH than free Pi and free ADP. ATP inhibited the 2-OGDH activity by chelating the free Mg(2+) and also as a Mg-ATP complex. With or without Mg(2+), ADP, and Pi activated the 2-OGDH by increasing the affinity for 2-OG and the V(m) of the reaction; ATP diminished the V(m), but it increased the affinity for 2-OG in the mitochondrial extract. Pi did not modify the 2-OGDH activation by Ca(2+). The results above mentioned were similar for both preparations, except for hyperbolic kinetics in the isolated enzyme and sigmoidal kinetics in the mitochondrial extracts when 2-oxoglutarate was varied. The data of this study indicated that physiological concentrations of Pi may exert a significant activation of 2-OGDH, which was potentiated by Mg(2+) and high pH, but surpassed by ADP.  相似文献   

5.
D-Ribulose-1,5-bisphosphate (RuBP) carboxylase has been purified from glutamate-CO2-S2O3(2)-grown Thiobacillus intermedius by pelleting the enzyme from the high-speed supernatant and by intermediary crystallization followed by sedimentation into a discontinuous 0.2 to 0.8 M sucrose gradient. The enzyme was homogeneous by the criteria of electrophoresis on polyacrylamide gels of several acrylamide concentrations, sedimentation velocity and equilibrium measurements, and electron microscopic observations of negatively stained preparations. The molecular weights of the enzyme determined by sedimentation equilibrium and light-scattering measurements averaged 462,500 +/- 13,000. The enzyme consisted of closely similar or identical polypeptide chains of a molecular weight of 54,500 +/- 5,450 determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The S(0)20,w of the enzyme was 18.07S +/- 0.22. Electron microscopic examination suggested that the octomeric enzyme (inferred from the molecular measurements mentioned) had a cubical structure. The specific activity of the enzyme was 2.76 mumol of RuBP-dependent CO2 fixed/min per mg of protein (at pH 8 and 30 C), and the turnover number in terms of moles of CO2 fixed per mole of catalytic site per second was 2.6. The enzyme was stable for 3 months at -20 C and at least 4 weeks at 0 C. The apparent Km for CO2 was 0.75 mM, and Km values for RuBP and Mg2+ were 0.076 and 3.6 mM, respectively. Dialyzed enzyme could be fully reactivated by the addition of 20 mM Mg2+ and partially reactivated by 20 mM Co2+, but Cd2+, Mn2+, Ca2+, and Zn2+ had no effect. The compound 6-phosphogluconate was a linear competitive inhibitor with respect to RuBP when it had been preincubated with enzyme, Mg2+, and HCO3-.  相似文献   

6.
Purified chondrocytic alkaline phosphatase (orthophosphoric-monoester phosphohydrolase (alkaline optimum), EC 3.1.3.1) from bovine fetal epiphyseal cartilage hydrolyzes a variety of phosphate esters as well as ATP and inorganic pyrophosphate. Optimal activities for p-nitrophenyl phosphate, ATP and inorganic pyrophosphate are found at pH 10.5, 10.0 and 8.5, respectively. The latter two substrates exhibit substrate inhibition at high concentrations. p-Nitrophenyl phosphate demonstrates decreasing pH optima with decreasng substrate concentration. Heat inactivation studies indicate that both phosphorolytic and pyrophosphorolytic cleavage occur at the same site on the enzyme. Mg2+ (0.1-10.0 mM) and Mn2+ (0.01-0.1 mM) show a small stimulation of p-nitrophenyl phosphate-splitting activity at pH 10.5. Levamisole, Pi, CN-, Zn2+ and L-phenylalanine are all reversible inhibitors of the phosphomonoesterase activity. Pi is a competitive inhibitor with a Ki of 10.0 mM. Levamisole and Zn2+ are potent non-competitive inhibitors with inhibition constants of 0.05 and 0.04 mM, respectively. The chondrocytic alkaline phosphatase is inhibited irreversibly by Be2+, EDTA, EGTA, ethane-1-hydroxydiphosphonate, dichloromethane diphosphonate, L-cysteine, phenyl-methylsulfonyl fluoride, N-ethylmaleimide and iodoacetamide. NaCL, KCL and Na2SO4 at 0.5-1.0 M inhibit the enzyme. At pH 8.5, the cleavage of inorganic pyrophosphate (pyrophosphate phosphohydrolase, EC 3.6.1.1) by the chondrocytic enzyme is slightly enhanced by low levels of Mg2+ and depressed by concentrations higher than 1mM. Ca2+ show only inhibition. Similar effects of Mg2+ and Ca2+ on the associated ATPase (ATP phosphohydrolase, EC 3.1.6.3) activity were observed. Arrhenius studies using p-nitrophenyl phosphate and AMP as substrates have accounted for the ten-fold difference in V in terms of small differences in both the enthalpies and entropies of activation which are 700 cal/mol and 2.3 cal/degree per mol, respectively.  相似文献   

7.
We have developed an assay to monitor in vitro the posttranslational assembly of the chloroplast protein, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). Most of the newly synthesized 55-kD catalytic ("large") subunits of this enzyme occur in a 29S complex together with 60- and 61-kD "binding" proteins. When the 29S complex is incubated with ATP and MgCl2 it dissociates into subunits, and the formerly bound large subunits now sediment at 7S (still faster than expected for a monomer). Upon incubation at 24 degrees C, these large subunits assemble into RuBisCO. The minority of newly made large subunits which are not bound to the 29S complex also sediment at 7S. When endogenous ATP was removed by addition of hexokinase and glucose, the dissociation of the 29S complex was inhibited. Nevertheless, the 7S large subunits assembled into RuBisCO, and did so to a greater extent than in controls retaining endogenous ATP. Thus the 7S large subunits are also assembly competent, at least when ATP is removed. Apparently, in chloroplast extracts, ATP can have a dual effect on the assembly of RuBisCO: on the one hand, even at low concentrations it can inhibit incorporation of 7S large subunits RuBisCO; on the other hand, at higher concentrations it can lead to substantial buildup of the 7S large subunit pool by causing dissociation of the 29S complex, and stimulate overall assembly. At both high and zero concentrations of ATP, however, antibody to the binding protein inhibited the assembly of endogenous large subunits into RuBisCO. Thus it appears that all assembly-competent large subunits are associated with the binding protein, either in the 7S complex or in the 29S complex. The involvement of the binding protein in RuBisCO assembly may represent the first example of non-autonomous protein assembly in higher plants and may pose problems for the genetic engineering of RuBisCO from these organisms.  相似文献   

8.
The cause of the inflection in the course of the carboxylase reaction and the changes in the functioning form of spinach ribulose bisphosphate carboxylase (RuBisCO) during the reaction were elucidated by relating the activity to the protein conformation of RuBisCO using a fluorescence probe, 2-p-toluidinylnaphthalene sulfonate. The activity of RuBisCO in the linear phase was 50 to 60% of that in the initial burst at 0.5 to 1.0 mM ribulose bisphosphate (RuBP) and 65 to 80% at 2 to 5 mM RuBP. The amount and the progress of the decrease in the activity during the reaction had a close relationship to a change in the protein conformation of RuBisCO. The enzyme, the substrate binding sites of which were masked beforehand with carboxyarabinitol bisphosphate, still showed a change of its protein conformation upon addition of RuBP, suggesting that RuBisCO has two (substrate and regulatory) RuBP-binding sites per RuBisCO promoter. RuBisCO required over 2 mM RuBP for binding on the regulatory sites. Both sites also bound 6-phosphogluconate. When both sites were masked with 6-phosphogluconate beforehand, the course of the subsequent carboxylase reaction was linear with time. From these results, I propose that the inflection in the course of the reaction of spinach RuBisCO is a hysteretic response of the enzyme to RuBP bound to both substrate and regulatory sites.  相似文献   

9.
Phosphate recycling under photorespiratory conditions was investigated using intact wheat chloroplasts from Triticum aestivum (cv. Maris dove). A decline in the optimal Pi level needed to support steady-state photosynthesis was observed (a) as the bicarbonate supply became limiting, or (b) as oxygen concentrations were increased. Further, at subsaturating CO2 and elevated O2 (52%), photosynthetic induction periods were shortest in the absence of exogenous Pi, and severely extended by its addition. Thus, photosynthesis under low CO2 levels which favor ribulose 1,5 bisphosphate (RuBP) oxygenase activity and glycolate synthesis by chloroplasts decreases their dependency on exogenous Pi from the initial illumination of chloroplasts through to the attainment of steady state rates of O2 evolution. Uptake of phosphate (Pi) was directly measured at ambient O2 concentrations and showed the stoichiometry of O2 evolved to Pi consumed at 10 mmol/L bicarbonate (saturating) had a mean value of 3.0, and was increased to 5.4 at 2.5 mmol/L bicarbonate and to > 8.0 at 1.0 mmol/L bicarbonate. The observation is consistent with enhanced stromal recycling of Pi released during hydrolysis of phosphoglycolate produced in greater quantities as the ratio of RuBP carboxylase relative to oxygenase activities (vc/vo) declines. The theoretical relationship between vc/vo and O2/Pi stoichiometries was derived and compared favorably to experimental data obtained.  相似文献   

10.
In the presence of Mg2+ vanadate was shown to facilitate ouabain binding to (Na+ + K+)-ATPase in much the same way as Pi does. Thus the hypothesis that vanadate interacts with the phosphate site of the enzyme seems to be supported by ouabain binding experiments. At given ouabain concentrations maximum binding is achieved at microM concentrations of vanadate whereas mM concentrations of Pi are needed. Na+ as well as K+ counteract ouabain binding but some cardiac glycoside binding is still possible at in vivo concentrations of these cations. A minor contamination of the enzyme preparations with vanadate could explain the in vitro binding of ouabain that can be obtained with Mg2+ and in the absence of Pi.  相似文献   

11.
We developed a continuous-addition method for maintaining subsaturating concentrations of ribulose-1,5-bisphosphate (RuBP) for several minutes, while simultaneously monitoring its consumption by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). This method enabled us to observe the effects of subsaturating RuBP and CO2 concentrations on the activity of Rubisco during much longer periods than previously studied. At saturating CO2, the activity of the enzyme declined faster when RuBP was maintained at concentrations near its Km value than when RuBP was saturating. At saturating RuBP, activity declined faster at limiting than at saturating CO2, in accordance with previous observations. The most rapid decline in activity occurred when both CO2 and RuBP concentrations were subsaturating. The activity loss was accompanied by decarbamylation of the enzyme, even though the enzyme was maintained at the same CO2 concentration before and after exposure to RuBP. Rubisco activase ameliorated the decline in activity at subsaturating CO2 and RuBP concentrations. The results are consistent with a proposed mechanism for regulating the carbamylation of Rubisco, which postulates that Rubisco activase counteracts Rubisco's unfavorable carbamylation equilibrium in the presence of RuBP by accelerating, in an ATP-dependent manner, the release of RuBP from its complex with uncarbamylated sites.  相似文献   

12.
The first step towards ATP synthesis by the Ca2-ATPase of sarcoplasmic reticulum is the phosphorylation of the enzyme by Pi. Phosphoenzyme formation requires both Pi and Mg2+. At 35 degrees C, the presence of a Ca2+ gradient across the vesicle membrane increases the apparent affinity of the ATPase for Pi more than 10-fold, whereas it had no effect on the apparent affinity for Mg2+. In the absence of a Ca2+ gradient, the phosphorylation reaction is inhibited by both K+ and Na+ at all Mg2+ concentrations used. However, in the presence of 1 mM Mg2+ and of a transmembrane Ca2+ gradient, the reaction is still inhibited by Na+, but the inhibition promoted by K+ is greatly decreased. When the Mg2+ concentration is raised above 2 mM, the enzyme no longer discriminates between K+ and Na+, and the phosphorylation reaction is equally inhibited by the two cations. Trifluoperazine, ruthenium red and spermidine were found to inhibit the phosphorylation reaction by different mechanisms. In the absence of a Ca2+ gradient, trifluoperazine competes with the binding to the enzyme of both Pi and Mg2+, whereas spermidine and ruthenium red were found to compete only with Mg2+. The data presented suggest that the enzyme has different binding sites for Mg2+ and for Pi.  相似文献   

13.
D Wu  P D Boyer 《Biochemistry》1986,25(11):3390-3396
When the heat-activated chloroplast F1 ATPase hydrolyzes [3H, gamma-32P]ATP, followed by the removal of medium ATP, ADP, and Pi, the enzyme has labeled ATP, ADP, and Pi bound to it in about equal amounts. The total of the bound [3H]ADP and [3H]ATP approaches 1 mol/mol of enzyme. Over a 30-min period, most of the bound [32P]Pi falls off, and the bound [3H]ATP is converted to bound [3H]ADP. Enzyme with such remaining tightly bound ADP will form bound ATP from relatively high concentrations of medium Pi with either Mg2+ or Ca2+ present. The tightly bound ADP is thus at a site that retains a catalytic capacity for slow single-site ATP hydrolysis (or synthesis) and is likely the site that participates in cooperative rapid net ATP hydrolysis. During hydrolysis of 50 microM [3H]ATP in the presence of either Mg2+ or Ca2+, the enzyme has a steady-state level of about one bound [3H]ADP per mole of enzyme. Because bound [3H]ATP is also present, the [3H]ADP is regarded as being present on two cooperating catalytic sites. The formation and levels of bound ATP, ADP, and Pi show that reversal of bound ATP hydrolysis can occur with either Ca2+ or Mg2+ present. They do not reveal why no phosphate oxygen exchange accompanies cleavage of low ATP concentrations with Ca2+ in contrast to Mg2+ with the heat-activated enzyme. Phosphate oxygen exchange does occur with either Mg2+ or Ca2+ present when low ATP concentrations are hydrolyzed with the octyl glucoside activated ATPase. Ligand binding properties of Ca2+ at the catalytic site rather than lack of reversible cleavage of bound ATP may underlie lack of oxygen exchange under some conditions.  相似文献   

14.
The interacting effects of the rate of ribulose 1,5-bisphosphate (RuBP) regeneration and the rate of RuBP utilization as influenced by the amount and activation of RuBP carboxylase on photosynthesis and RuBP concentrations were resolved in experiments which examined the kinetics of the response of photosynthesis and RuBP concentrations after step changes from a rate-saturating to a rate-limiting light intensity in Xanthium strumarium. Because RuBP carboxylase requires several minutes to deactivate in vivo, it was possible to observe the effect of reducing the rate of RuBP regeneration on the RuBP concentration at constant enzyme activation state by sampling very soon after reducing the light intensity. Samples taken over longer time periods showed the effect of changes in enzyme activation at constant RuBP regeneration rate on RuBP concentration and photosynthetic rate. Within 15 s of lowering the light intensity from 1500 to 600 microEinsteins per square meter per second the RuBP concentration in the leaves dropped below the enzyme active site concentration, indicating that RuBP regeneration rate was limiting for photosynthesis. After longer intervals of time, the RuBP concentration in the leaf increased as the RuBP carboxylase assumed a new steady state activation level. No change in the rate of photosynthesis was observed during the interval that RuBP concentration increased. It is concluded that the rate of photosynthesis at the lower light intensity was limited by the rate of RuBP regeneration and that parallel changes in the activation of RuBP carboxylase occurred such that concentrations of RuBP at steady state were not altered by changes in light intensity.  相似文献   

15.
Magnesium stimulates phosphorylation of the calcium pump protein of the sarcoplasmic reticulum by inorganic phosphate, but the effect is reversed by high [Mg2+]. This reversal is readily explained in terms of the generally accepted existence of two conformational states of the enzyme, E1 and E2. E2 is the form of the enzyme that can be phosphorylated by Pi, and it has one binding site for Mg2+. E1 is the form of the enzyme that has two high-affinity Ca2+ binding sites, and it is phosphorylated by ATP when Ca2+ is bound. Mg2+ can bind weakly to the two Ca2+ sites and to a third site known to be present on E1; this stabilizes E1 at the expense of E2 when [Mg2+] is large. Stabilization of E1 at pH 6.2 and 25 degrees C was found to be a highly cooperative function of [Mg2+] and was not prevented by increasing [Pi]. The latter result requires the existence of a binding site for Pi on E1, with an affinity for Pi comparable to that of E2. Cooperativity with respect to [Mg2+] requires that E2 is the stable state of the enzyme in the absence of ligands, with an equilibrium constant [E2]/[E1] on the order of 10(3) or higher at pH 6.2 and 25 degrees C.  相似文献   

16.
Adding 15 mM free Mg2+ decreased Vmax of the Na+/K(+)-ATPase reaction. Mg2+ also decreased the K0.5 for K+ activation, as a mixed inhibitor, but the increased inhibition at higher K+ concentrations diminished as the Na+ concentration was raised. Inhibition was greater with Rb+ but less with Li+ when these cations substituted for K+ at pH 7.5, while at pH 8.5 inhibition was generally less and essentially the same with all three cations: implying an association between inhibition and ion occlusion. On the other hand, Mg2+ increased the K0.5 for Na(+)-activation of the Na+/K(+)-ATPase and Na(+)-ATPase reactions, as a mixed inhibitor. Changing incubation pH or temperature, or adding dimethylsulfoxide affected inhibition by Mg2+ and K0.5 for Na+ diversely. Presteady-state kinetic studies on enzyme phosphorylation, however, showed competition between Mg2+ and Na+. In the K(+)-phosphatase reaction catalyzed by this enzyme Mg2+ was a (near) competitor toward K+. Adding Na+ with K+ inhibited phosphatase activity, but under these conditions 15 mM Mg2+ stimulated rather than inhibited; still higher Mg2+ concentrations then inhibited with K+ plus Na+. Similar stimulation and inhibition occurred when Mn2+ was substituted for Mg2+, although the concentrations required were an order of magnitude less. In all these experiments no ionic substitutions were made to maintain ionic strength, since alternative cations, such as choline, produced various specific effects themselves. Kinetic analyses, in terms of product inhibition by Mg2+, require Mg2+ release at multiple steps. The data are accommodated by a scheme for the Na+/K(+)-ATPase with three alternative points for release: before MgATP binding, before K+ release and before Na+ binding. The latter alternatives necessitate two Mg2+ ions bound simultaneously to the enzyme, presumably to divalent cation-sites associated with the phosphate and the nucleotide domains of the active site.  相似文献   

17.
Sugar Beets (Beta vulgaris L. cv F58-554H1) were cultured hydroponically in growth chambers. Leaf orthophosphate (Pi) levels were varied nutritionally. The effect of decreased leaf phosphate (low-P) status was determined on the diurnal changes in the pool sizes of leaf ribulose 1,5-bisphosphate (RuBP), 3-phosphoglycerate (PGA), triose phosphate, fructose 1,6-bisphosphate, fructose-6-phosphate, glucose-6-phosphate, adenylates, nicotinamide nucleotides, and Pi. Except for triose phosphate, low-P treatment caused a marked reduction in the levels of leaf sugar phosphates (on a leaf area basis) throughout the diurnal cycle. Low-P treatment decreased the average leaf RuBP levels by 60 to 69% of control values during the light period. Low-P increased NADPH levels and NADPH/NADP+ ratio but decreased ATP; the ATP/ADP ratio was unaffected. Low P treatment caused a marked reduction in RuBP regeneration (RuBP levels were half the RuBP carboxylase binding site concentration) but did not depress PGA reduction to triose phosphate. These results indicate that photosynthesis in low-P leaves was limited by RuBP regeneration and that RuBP formation in low-P leaves was not limited by the supply of ATP and NADPH. We suggest that RuBP regeneration was limited by the supply of fixed carbon, an increased proportion of which was diverted to starch synthesis.  相似文献   

18.
Ribulose 1,5-bisphosphate carboxylase-oxygenase (RuBisCO) from the halophilic cyanobacterium, Aphanothece halophytica, dissociates into catalytic core (large subunit A oligomer) and small subunit B under low ionic strength during sucrose density gradient centrifugation. Supplementation of KCl, NaCl, or K2SO4 ( [I] = 0.3 M) partly prevents the dissociation, the preventive effect of divalent cation salts such as MgCl2 and CaCl2 being more effective than monovalent cation salts. RuBisCO with its higher-plant-type molecular form can be isolated from the cyanobacterial extracts using gradient medium containing 0.3 M KCl, 20 mM MgCl2, and 10 mM CaCl2. The isolated enzyme contains large subunit A and small subunit B in a molar ratio of approximately 1:1, estimated from the densitometric scanning of Coomassie blue-stained gels. During the second sucrose density gradient centrifugation to remove minor contaminants, a small amount of subunit B is depleted from the holoenzyme. Determination of the molecular weight by equilibrium centrifugation and electron microscopic observation have confirmed that the cyanobacterial RuBisCO has an A8B8-type structure. The enzyme activity per se is found to be sensitive to concentrations of salts, and small subunit B is obligatory for the enzyme catalysis. It has been shown that the more the enzyme activity is inhibited by salts, the tighter the association of subunit B becomes. It is likely that the active enzyme retains the loose conformational structure to such an extent that the dissociable release of subunit B from the holoenzyme in vivo is not allowed.  相似文献   

19.
(Na+ + K+)-ATPase activity of a dog kidney enzyme preparation was markedly inhibited by 10-30% (v/v) dimethyl sulfoxide (Me2SO) and ethylene glycol (Et(OH)2); moreover, Me2SO produced a pattern of uncompetitive inhibition toward ATP. However, K+-nitrophenylphosphatase activity was stimulated by 10-20% Me2SO and Et(OH)2 but was inhibited by 30-50%. Me2SO decreased the Km for this substrate but had little effect on the Vmax below 30% (at which concentration Vmax was then reduced). Me2SO also reduced the Ki for Pi and acetyl phosphate as competitors toward nitrophenyl phosphate but increased the Ki for ATP, CTP and 2-O-methylfluorescein phosphate as competitors. Me2SO inhibited K+-acetylphosphatase activity, although it also reduced the Km for that substrate. Finally, Me2SO increased the rate of enzyme inactivation by fluoride and beryllium. These observations are interpreted in terms of the E1P to E2P transition of the reaction sequence being associated with an increased hydrophobicity of the active site, and of Me2SO mimicking such effects by decreasing water activity: (i) primarily to stabilize the covalent E2P intermediate, through differential solvation of reactants and products, and thereby inhibiting the (Na+ + K+)-ATPase reaction and acting as a dead-end inhibitor to produce the pattern of uncompetitive inhibition; inhibiting the K+-acetylphosphatase reaction that also passes through an E2P intermediate; but not inhibiting (at lower Me2SO concentrations) the K+-nitrophenylphosphatase reaction that does not pass through such an intermediate; and (ii) secondarily to favor partitioning of Pi and non-nucleotide phosphates into the hydrophobic active site, thereby decreasing the Km for nitrophenyl phosphate and acetyl phosphate, the Ki for Pi and acetyl phosphate in the K+-nitrophenylphosphatase reaction, accelerating inactivation by fluoride and beryllium acting as phosphate analogs, and, at higher concentrations, inhibiting the K+-nitrophenylphosphatase reaction by stabilizing the non-covalent E2.P intermediate of that reaction. In addition, Me2SO may decrease binding at the adenine pocket of the low-affinity substrate site, represented as an increased Ki for ATP, CTP and 3-O-methylfluorescein phosphate.  相似文献   

20.
Treatment with carboxypeptidase A of ribulose bisphosphate carboxylase/oxygenase (rubisco) from spinach and Chlamydomonas, but not tobacco, reduced activity by 60-70%. Further studies with the spinach enzyme indicated that only one amino acid from each of the large (valine) and small (tyrosine) subunits was removed and the loss of activity was correlated with modification of the large subunit. The modified enzyme also had a two-fold greater Km for RuBP but CO2/O2 specificity was only 5% lower and may not be significantly different. The relative rates of release of valine and tyrosine also depended on the presence or absence of RuBP or CO2 plus Mg during treatment. The results indicate that the C-terminal amino acid in the large subunit of spinach, which is not located near the active site region, plays a previously unrecognized role in determining the catalytic activity of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号