首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA methylation has been discovered in Drosophila only recently. Current evidence indicates that de novo methylation patterns in drosophila are maintained in a different way compared to vertebrates and plants. As the genomic role and determinants of DNA methylation are poorly understood in invertebrates, its link with several factors has been suggested. In this study, we tested for the putative link between DNA methylation patterns in Drosophila melanogaster and radiation or the activity of P transposon. Neither of the links were apparent from the results, however, we obtained some hints on a possible link between DNA methylation pattern and genomic heterogeneity of fly lineages.  相似文献   

2.
Guo XX  Ye HY  Zhang M 《遗传》2011,33(7):713-719
DNA甲基化是表观遗传调控的重要机制,但果蝇很久以来被认为是一种缺乏甲基化的模式生物。近年来才证实果蝇基因组中有5′-甲基胞嘧啶残基的存在,其DNA甲基化水平在胚胎发育早期达到最高,总体水平低于脊椎动物及植物。果蝇拥有一个包含dDNMT2和dMBD2/3的简单甲基化修饰系统,其分别与哺乳动物中的DNMT2家族及MBD2/MBD3蛋白高度同源。果蝇DNA甲基化模式和特点可能随果蝇种类不同而不同。文章对果蝇DNA甲基化特点及其功能研究进展进行了综述。  相似文献   

3.
A Dnmt2-like protein mediates DNA methylation in Drosophila   总被引:9,自引:0,他引:9  
The methylation status of Drosophila DNA has been discussed controversially over a long time. Recent evidence has provided strong support for the existence of 5-methylcytosine in DNA preparations from embryonic stages of fly development. The Drosophila genome contains a single candidate DNA methyltransferase gene that has been termed Dnmt2. This gene belongs to a widely conserved family of putative DNA methyltransferases. However, no catalytic activity has been demonstrated for any Dnmt2-like protein yet. We have now established a protocol for the immunological detection of methylated cytosine in fly embryos. Confocal analysis of immunostained embryos provided direct evidence for the methylation of embryonic DNA. In order to analyse the function of Dnmt2 in DNA methylation, we depleted the protein by RNA interference. Depletion of Dnmt2 had no detectable effect on embryonic development and resulted in a complete loss of DNA methylation. Consistently, overexpression of Dnmt2 from an inducible transgene resulted in significant genomic hypermethylation at CpT and CpA dinucleotides. These results demonstrate that Dnmt2 is both necessary and sufficient for DNA methylation in Drosophila and suggest a novel CpT/A-specific DNA methyltransferase activity for Dnmt2 proteins.  相似文献   

4.
5.
DNA methylation reprogramming, the erasure of DNA methylation patterns shortly after fertilization and their reestablishment during subsequent early development, is essential for proper mammalian embryogenesis. In contrast, the importance of this process in the development of non-mammalian vertebrates such as fish is less clear. Indeed, whether or not any widespread changes in DNA methylation occur at all during cleavage and blastula stages of fish in a fashion similar to that shown in mammals has remained controversial. Here we have addressed this issue by applying the techniques of Southwestern immunoblotting and immunohistochemistry with an anti-5-methylcytosine antibody to the examination of DNA methylation in early zebrafish embryos. These techniques have recently been utilized to demonstrate that development-specific changes in genomic DNA methylation also occur in Drosophila melanogaster and Dictyostelium discoideum, both organisms for which DNA methylation was previously not thought to occur. Our data demonstrate that genome-wide changes in DNA methylation occur during early zebrafish development. Although zebrafish sperm DNA is strongly methylated, the zebrafish genome is not detectably methylated through cleavage and early blastula stages but is heavily remethylated in blastula and early gastrula stages.  相似文献   

6.
DNA methylation has been proposed to be important in many biological processes and is the subject of intense study. Traditional bisulfite genomic sequencing allows detailed high-resolution methylation pattern analysis of each molecule with haplotype information across a few hundred bases at each locus, but lacks the capacity to gather voluminous data. Although recent technological developments are aimed at assessing DNA methylation patterns in a high-throughput manner across the genome, the haplotype information cannot be accurately assembled when the sequencing reads are short or when each hybridization target only includes one or two cytosine-phosphate-guanine (CpG) sites. Whether a distinct and nonrandom DNA methylation pattern is present at a given locus is difficult to discern without the haplotype information, and the DNA methylation patterns are much less apparent because the data are often obtained only as methylation frequencies at each CpG site with some of these methods. It would facilitate the interpretation of data obtained from high-throughput bisulfite sequencing if the loci with nonrandom DNA methylation patterns could be distinguished from those that are randomly methylated. In this study, we carried out traditional genomic bisulfite sequencing using the normal diploid human embryonic stem (hES) cell lines, and utilized Hamming distance analysis to evaluate the existence of a distinct and nonrandom DNA methylation pattern at each locus studied. Our findings suggest that Hamming distance is a simple, quick, and useful tool to identify loci with nonrandom DNA methylation patterns and may be utilized to discern links between biological changes and DNA methylation patterns in the high-throughput bisulfite sequencing data sets.  相似文献   

7.
8.
9.
Mammalian DNA methyltransferases (DNMTs) establish and maintain genomic DNA methylation patterns that are required for proper epigenetic regulation of gene expression and maintenance of genome stability during normal development. Aberrant DNA methylation patterns are implicated in a variety of pathological conditions including cancer and neurological disorders. Rapid advances in genomic technologies have allowed the generation of high resolution whole-genome views of DNA methylation and DNA methyltransferase occupancy in pluripotent stem cells and differentiated somatic cells. Furthermore, recent identification of oxidation derivatives of cytosine methylation in mammalian DNA raises the possibility that DNA methylation patterns are more dynamic than previously anticipated. Here, we review the recent progress in our understanding of the genomic function and regulatory mechanisms of mammalian DNA methylation.  相似文献   

10.
11.
12.
Changes of DNA methylation patterns of two Drosophila melanogaster strains (Canton-S and ri) irradiated with gamma-radiation in laboratory conditions with a low dose rate (1.2 × 10?8, 0.3 × 10?8, and 0.12 × 10?8 Gy/s) have been studied. Two restrictases GluI and GlaI have been used taking in to account methylation peculiarities of Drosophila melanogaster. The difference between the patterns of DNA methylation in males and females in every studied strain in the control has been identified. The decrease of the methylation level in recognition sites for restrictase GluI in males and females of the ri-strain with higher activity of the P-mobile element as the result of chronic irradiation has been found. The decrease of the methylation level in recognition sites for restrictase GlaI in females of both strains has been noted. The question on the association of DNA methylation processes and activation of mobile elements has been discussed.  相似文献   

13.
The level of genomic DNA methylation plays an important role in development and disease. In order to establish an experimental system for the functional analysis of genome-wide hypermethylation, we overexpressed the mouse de novo methyltransferase Dnmt3a in Drosophila melanogaster. These flies showed severe developmental defects that could be linked to reduced rates of cell cycle progression and irregular chromosome condensation. In addition, hypermethylated chromosomes revealed elevated rates of histone H3-K9 methylation and a more restricted pattern of H3-S10 phosphorylation. The developmental and chromosomal defects induced by DNA hypermethylation could be rescued by mutant alleles of the histone H3-K9 methyltransferase gene Su(var)3-9. This mutation also resulted in a significantly decreased level of genomic DNA methylation. Our results thus uncover the molecular consequences of genomic hypermethylation and demonstrate a mutual interaction between DNA methylation and histone methylation.  相似文献   

14.
Epigenetics pertains to heritable alterations in gene expression that do not involve modification of the underlying genomic DNA sequence. Historically, the study of epigenetic mechanisms has focused on DNA methylation and histone modifications, but the concept of epigenetics has been more recently extended to include microRNAs as well. Epigenetic patterning is modified by environmental exposures and may be a mechanistic link between environmental risk factors and the development of disease. Epigenetic dysregulation has been associated with a variety of human diseases, including cancer, neurological disorders, and autoimmune diseases. In this review, we consider the role of epigenetics in common ocular diseases, with a particular focus on DNA methylation and microRNAs. DNA methylation is a critical regulator of gene expression in the eye and is necessary for the proper development and postmitotic survival of retinal neurons. Aberrant methylation patterns have been associated with age-related macular degeneration, susceptibility to oxidative stress, cataract, pterygium, and retinoblastoma. Changes in histone modifications have also been observed in experimental models of diabetic retinopathy and glaucoma. The expression levels of specific microRNAs have also been found to be altered in the context of ocular inflammation, retinal degeneration, pathological angiogenesis, diabetic retinopathy, and ocular neoplasms. Although the complete spectrum of epigenetic modifications remains to be more fully explored, it is clear that epigenetic dysregulation is an important contributor to common ocular diseases and may be a relevant therapeutic target.  相似文献   

15.
DNA methylation plays an important role in development and disease. The primary sites of DNA methylation in vertebrates are cytosines in the CpG dinucleotide context, which account for roughly three quarters of the total DNA methylation content in human and mouse cells. While the genomic distribution, inter-individual stability, and functional role of CpG methylation are reasonably well understood, little is known about DNA methylation targeting CpA, CpT, and CpC (non-CpG) dinucleotides. Here we report a comprehensive analysis of non-CpG methylation in 76 genome-scale DNA methylation maps across pluripotent and differentiated human cell types. We confirm non-CpG methylation to be predominantly present in pluripotent cell types and observe a decrease upon differentiation and near complete absence in various somatic cell types. Although no function has been assigned to it in pluripotency, our data highlight that non-CpG methylation patterns reappear upon iPS cell reprogramming. Intriguingly, the patterns are highly variable and show little conservation between different pluripotent cell lines. We find a strong correlation of non-CpG methylation and DNMT3 expression levels while showing statistical independence of non-CpG methylation from pluripotency associated gene expression. In line with these findings, we show that knockdown of DNMTA and DNMT3B in hESCs results in a global reduction of non-CpG methylation. Finally, non-CpG methylation appears to be spatially correlated with CpG methylation. In summary these results contribute further to our understanding of cytosine methylation patterns in human cells using a large representative sample set.  相似文献   

16.
17.
Social insects are key examples of organisms that display polyphenism. Their genomes encode instructions for the development of multiple phenotypes, known as castes, which typically have highly divergent morphology, physiology and behaviour. DNA methylation, an epigenetic mechanism associated with modulation of gene expression in various eukaryotes, has recently been shown to provide a key link between environmental cues and caste-specific gene expression in honey bees (Hymenoptera). In termites—a major social insect group phylogenetically distant from Hymenoptera—the existence of DNA methylation has not, to our knowledge, been reported to date. Since genes encoding key DNA methylation enzymes are known to be absent in the genomes of a number of insect species, we sought to test whether termites are able to methylate their DNA, and, if so, whether caste-specific patterns of DNA methylation exist. We performed methylation-specific amplified fragment length polymorphism on the termite Coptotermes lacteus, and found evidence for DNA methylation. However, a comparison of methylation levels in different castes did not reveal any significant differences in methylation levels. The demonstration of DNA methylation in termites sets the stage for future epigenetic studies in these important social insects.  相似文献   

18.
The possible role of methylation in the performance of heterosis has been analyzed in many crops. To further study this possibility, we investigated both the differences in cytosine methylation patterns between cotton heterotic hybrid/nonheterotic hybrids and their parental lines and the change in methylation level from seedling stage to flowering stage by using the methylation-sensitive amplified polymorphism (MSAP) method. The results showed that the number of demethylation loci in highly heterotic hybrids was greater that in lowly heterotic hybrids, and the level of DNA cytosine methylation in cotton at the seedling stage is higher than that at the flowering stage. The altered methylation patterns at low-copy genomic regions can be confirmed by DNA gel blot analysis. A total of 39 fragments that showed different methylation patterns were cloned and sequenced. The methylation status of these genes was modified differentially in hybrid and parents, suggesting that these genes might play a role in the performance of heterosis.  相似文献   

19.
An understanding of cellular processes that determine the response to ionizing radiation (IR) exposure is essential to improve radiotherapy and to assess risks to human health after accidental radiation exposure. Exposure to IR induces a multitude of biological effects. Recent studies have indicated the involvement of epigenetic events in regulating the responses of irradiated cells. DNA methylation, where the cytosine bases in CpG dimers are converted to 5-methyl cytosine, is an epigenetic event that has been shown to regulate a variety of biological processes. We investigated the DNA methylation changes in irradiated TK6 and WTK1 human cells that differ in sensitivity to IR. The global DNA methylation alterations as measured by an enzyme-linked immunosorbent assay-based assay showed hypomethylation in both type of cells. Using an arbitrarily primed polymerase chain reaction (AP-PCR) approach, we observed time-dependent dynamic changes in the regional genomic DNA methylation patterns in both cell lines. The AP-PCR DNA methylation profiles were different between TK6 and WTK1 cells, indicating the involvement of differential genomic DNA responses to radiation treatment. The analysis of the components of the DNA methylation machinery showed the modulation of maintenance and de novo methyltransferases in irradiated cells. DNMT1 mRNA levels were increased in TK6 cells after irradiation but were repressed in WTK1 cells. DNMT3A and DNMT3B were induced in both cells after radiation treatment. TET1, involved in the conversion of 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC), was induced in both cells. This study demonstrates that irradiated cells acquire epigenetic changes in the DNA methylation patterns, and the associated cellular machinery are involved in the response to radiation exposure. This study also shows that DNA methylation patterns change at different genomic regions and are dependent on time after irradiation and the genetic background of the cell.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号