共查询到20条相似文献,搜索用时 0 毫秒
2.
Novel progress has been made to understand the adverse pathophysiology in the pancreas of offspring exposed to overnutrition in utero. Our study is the first to evaluate whether the adverse effects of maternal overnutrition on offspring β-cell function are reversible or preventable through preconception maternal diet interventions. Herein, offspring mice were exposed in utero to one of the following: maternal normal-fat diet (NF group), maternal high-fat diet (HF group) or maternal diet transition from an HF to NF diet 9 weeks before pregnancy (H9N group). Offspring mice were subjected to postweaning HF diet for 12 weeks. HF offspring, but not H9N, displayed glucose intolerance and insulin resistance. HF male offspring had enlarged islet β-cells with reduced β-cell density, whereas, H9N male offspring did not show these changes. Co-immunofluorescent (Co-IF) staining of glucose transporter 2 (Glut2) and insulin (Ins) revealed significantly more Glut2+Ins− cells, indicative of insulin degranulation, in HF male offspring but not H9N. In addition, Co-IF of insulin and p-H3S10 indicated that β cells of HF male offspring, but not H9N, had proliferation defects likely due to inhibited protein kinase B (AKT) phosphorylation. In summary, our study demonstrates that maternal H9N diet effectively prevents functional deterioration of β cells seen in HF male offspring by avoiding β-cell proliferation defects and degranulation. 相似文献
3.
Weerachat Sompong Henrique Cheng Sirichai Adisakwattana 《Journal of physiology and biochemistry》2017,73(1):121-131
Methylglyoxal (MG) can react with amino acids of proteins to induce protein glycation and consequently the formation of advanced glycation end-products (AGEs). Previous studies reported that ferulic acid (FA) prevented glucose-, fructose-, and ribose-induced protein glycation. In this study, FA (0.1–1 mM) inhibited MG-induced protein glycation and oxidative protein damage in bovine serum albumin (BSA). Furthermore, FA (0.0125–0.2 mM) protected against lysine/MG-mediated oxidative DNA damage, thereby inhibiting superoxide anion and hydroxyl radical generation during lysine and MG reaction. In addition, FA did not have the ability to trap MG. Finally, FA (0.1 mM) pretreatment attenuated MG-induced decrease in cell viability and prevented MG-induced cell apoptosis in pancreatic β-cells. The results suggest that FA is capable of protecting β-cells from MG-induced cell damage during diabetes. 相似文献
4.
Eun Soo Lee Jeong Suk Kang Hong Min Kim Su Jin Kim Nami Kim Jung Ok Lee Hyeon Soo Kim Eun Young Lee Choon Hee Chung 《Journal of cellular and molecular medicine》2021,25(18):8725-8733
Ectopic fat accumulation in the kidneys causes oxidative stress, inflammation and cell death. Dehydrozingerone (DHZ) is a curcumin analog that exhibits antitumour, antioxidant and antidiabetic effects. However, the efficacy of DHZ in diabetic nephropathy (DN) is unknown. Here, we verified the efficacy of DHZ on DN. We divided the experimental animals into three groups: regular diet, 60% high-fat diet (HFD) and HFD with DHZ for 12 weeks. We analysed levels of renal triglycerides and urinary albumin and albumin-creatinine ratio, renal morphological changes and molecular changes via real-time polymerase chain reaction and immunoblotting. Furthermore, high glucose (HG)- or palmitate (PA)-stimulated mouse mesangial cells or mouse podocytes were treated with DHZ for 24 h. As a result, DHZ markedly reduced renal glycerol accumulation and albuminuria excretion through improvement of thickened glomerular basement membrane, podocyte loss and slit diaphragm reduction. In the renal cortex in the HFD group, phospho-AMPK and nephrin expression reduced, whereas arginase 2 and CD68 expression increased; however, these changes were recovered after DHZ administration. Increased reactive oxygen species (ROS) stimulated by HG or PA in podocytes was inhibited by DHZ treatment. Collectively, these findings indicate that DHZ ameliorates DN via inhibits of lipotoxicity-induced inflammation and ROS formation. 相似文献
5.
6.
Daleep K. Arora Abiy M. Mohammed Anjaneyulu Kowluru 《Apoptosis : an international journal on programmed cell death》2013,18(1):1-8
Emerging evidence implicates novel roles for post-translational prenylation (i.e., farnesylation and geranylgeranylation) of various signaling proteins in a variety of cellular functions including hormone secretion, survival and apoptosis. In the context of cellular apoptosis, it has been shown previously that caspase-3 activation, a hallmark of mitochondrial dysregulation, promotes hydrolysis of several key cellular proteins. We report herein that exposure of insulin-secreting INS 832/13 cells or normal rat islets to etoposide leads to significant activation of caspase-3 and subsequent degradation of the common α-subunit of farnesyl/geranylgeranyl transferases (FTase/GGTase). Furthermore, the above stated signaling steps were prevented by Z-DEVD-FMK, a known inhibitor of caspase-3. In addition, treatment of cell lysates with recombinant caspase-3 also caused FTase/GGTase α-subunit degradation. Moreover, nifedipine, a calcium channel blocker, markedly attenuated etoposide-induced caspase-3 activation, FTase/GGTase α-subunit degradation in INS 832/13 cells and normal rat islets. Further, nifedipine significantly restored etoposide-induced loss in metabolic cell viability in INS 832/13 cells. Based on these findings, we conclude that etoposide induces loss in cell viability by inducing mitochondrial dysfunction, caspase-3 activation and degradation of FTase/GGTase α-subunit. Potential significance of these findings in the context of protein prenylation and β-cell survival are discussed. 相似文献
7.
The downregulation of PDX-1 expression plays an important role in development of type 2 diabetes. However, the negative regulator of PDX-1 expression is not well known. In this study, we analyzed the mouse PDX-1 promoter to characterize the effects of ATF3 on PDX-1 expression in pancreatic β-cells. Both thapsigargin treatment, an inducer of ER stress, and ATF3 expression decreased PDX-1 expression in pancreatic β-cells, MIN6N8. Furthermore, they also repressed the activity of −4.5 Kb promoter of mouse PDX-1 gene. Transfection studies with 5′ deleted-reporters showed that ATF3 repressed the activity of 0.9 Kb PDX-1 promoter, whereas it did not affect the activity of 0.7 Kb PDX-1 promoter, suggesting that ATF3 responsive element is located between the −903 and −702. An electrophoretic mobility shift assay and chromatin immunoprecipitation assay demonstrated that ATF3 binds directly to the promoter region spanning from −759 to −738. Moreover, mutation of the putative ATF/CRE site between −752 and −745 abrogated ATF3-mediated transrepression of the PDX-1 promoter. PDX-1 was decreased in MIN6N8 cells treated with high glucose or high palmitate, whereas ATF3 was increased, indicating that ATF3 plays a role in hyperglycemia or hyperlipidemia-mediated downregulation of PDX-1 expression. Collectively, these results demonstrate that ATF3 represses PDX-1 expression via binding to an ATF3-responsive element in its promoter, which plays an important role in suppression of pancreatic β-cells function. 相似文献
8.
9.
10.
Chung SS Kim M Lee JS Ahn BY Jung HS Lee HM Park KS 《American journal of physiology. Endocrinology and metabolism》2011,301(5):E912-E921
Thiazolidinediones (TZDs) are synthetic ligands of peroxisome proliferator-activated receptor-γ (PPARγ), a member of the nuclear receptor superfamily. TZDs are known to increase insulin sensitivity and also to have an antioxidative effect. In this study, we tested whether TZDs protect pancreatic β-cells from oxidative stress, and we investigated the mechanism involved in this process. To generate oxidative stress in pancreatic β-cells (INS-1 and βTC3) or isolated islets, glucose oxidase was added to the media. The extracellular and intracellular reactive oxygen species (ROS) were measured to directly determine the antioxidant effect of TZDs. The phosphorylation of JNK/MAPK after oxidative stress was detected by Western blot analysis, and glucose-stimulated insulin secretion and cell viability were also measured. TZDs significantly reduced the ROS levels that were increased by glucose oxidase, and they effectively prevented β-cell dysfunction. The antioxidative effect of TZDs was abolished in the presence of a PPARγ antagonist, GW9662. Real-time PCR was used to investigate the expression levels of antioxidant genes. The expression of catalase, an antioxidant enzyme, was increased by TZDs in pancreatic β-cells, and the knockdown of catalase significantly inhibited the antioxidant effect of TZDs. These results suggest that TZDs effectively protect pancreatic β-cells from oxidative stress, and this effect is dependent largely on PPARγ. In addition, the expression of catalase is increased by TZDs, and catalase, at least in part, mediates the antioxidant effect of TZDs in pancreatic β-cells. 相似文献
11.
Pregnancy is a normal physiological condition in which the maternal β-cell mass increases rapidly about two-fold to adapt to new metabolic challenges. We have used a lineage tracing of β-cells to analyse the origin of new β-cells during this rapid expansion in pregnancy. Double transgenic mice bearing a tamoxifen-dependent Cre-recombinase construct under the control of a rat insulin promoter, together with a reporter Z/AP gene, were generated. Then, in response to a pulse of tamoxifen before pregnancy, β-cells in these animals were marked irreversibly and heritably with the human placental alkaline phosphatase (HP AP). First, we conclude that the lineage tracing system was highly specific for β-cells. Secondly, we scored the proportion of the β-cells marked with HP AP during a subsequent chase period in pregnant and non-pregnant females. We observed a dilution in this labeling index in pregnant animal pancreata, compared to nonpregnant controls, during a single pregnancy in the chase period. To extend these observations we also analysed the labeling index in pancreata of animals during the second of two pregnancies in the chase period. The combined data revealed statistically-significant dilution during pregnancy, indicating a contribution to new beta cells from a non-β-cell source. Thus for the first time in a normal physiological condition, we have demonstrated not only β-cell duplication, but also the activation of a non-β-cell progenitor population. Further, there was no transdifferentiation of β-cells to other cell types in a two and half month period following labeling, including the period of pregnancy. 相似文献
12.
《Organogenesis》2013,9(2):125-133
Pregnancy is a normal physiological condition in which the maternal β-cell mass increases rapidly about two-fold to adapt to new metabolic challenges. We have used a lineage tracing of β-cells to analyse the origin of new β-cells during this rapid expansion in pregnancy. Double transgenic mice bearing a tamoxifen-dependent Cre-recombinase construct under the control of a rat insulin promoter, together with a reporter Z/AP gene, were generated. Then, in response to a pulse of tamoxifen before pregnancy, β-cells in these animals were marked irreversibly and heritably with the human placental alkaline phosphatase (HPAP). First, we conclude that the lineage tracing system was highly specific for β-cells. Secondly, we scored the proportion of the β-cells marked with HPAP during a subsequent chase period in pregnant and non-pregnant females. We observed a dilution in this labelling index in pregnant animal pancreata, compared to non-pregnant controls, during a single pregnancy in the chase period. To extend these observations we also analysed the labelling index in pancreata of animals during the second of two pregnancies in the chase period. The combined data revealed statistically-significant dilution during pregnancy, indicating a contribution to new beta cells from a non-β-cell source. Thus for the first time in a normal physiological condition, we have demonstrated not only β-cell duplication, but also the activation of a non-β-cell progenitor population. Further, there was no transdifferentiation of β-cells to other cell types in a two and half month period following labelling, including the period of pregnancy. 相似文献
13.
M. Derenzini C. M. Betts C. Busi L. Fiume 《Virchows Archiv. B, Cell pathology including molecular pathology》1978,28(1):13-20
In mice poisoned by alpha-amanitin nuclear changes typical of this toxin were observed in beta-cells of pancreatic islets. The lesions became progressively more severe and at 48 h after toxin injection some cells were necrotic. The damage to these cells could have implications in the changes in glycogen metabolism which occur after alpha-aminitin poisoning. 相似文献
14.
Ryanodine receptor channel model is introduced to a dynamical model of pancreatic beta-cells to discuss the effects of RyR channels and glucose concentration on membrane potential. The results show Ca(2+) concentration changes responding to enhance of glucose concentration is more quickly than that of activating RyR channels, and both methods can induce bursting action potential and increase free cytosolic Ca(2+) concentration. An interesting finding is that moderate stimulation to RyR channels will result in a kind of "complex bursting", which is more effective in enhancing average Ca(2+) concentration and insulin section. 相似文献
15.
Changes in cytosolic free Ca2+ concentration ([Ca2+]c) play a crucial role in the control of insulin secretion from the electrically excitable pancreatic β-cell. Secretion is controlled by the finely tuned balance between Ca2+ influx (mainly through voltage-dependent Ca2+ channels, but also through voltage-independent Ca2+ channels like store-operated channels) and efflux pathways. Changes in [Ca2+]c directly affect [Ca2+] in various organelles including the endoplasmic reticulum (ER), mitochondria, the Golgi apparatus, secretory granules and lysosomes, as imaged using recombinant targeted probes. Because most of these organelles have specific Ca2+ influx and efflux pathways, they mutually influence free [Ca2+] in the others. In this article, we review the mechanisms of control of [Ca2+] in various compartments and particularly the cytosol, the endoplasmic reticulum ([Ca2+]ER), acidic stores and mitochondrial matrix ([Ca2+]mito), focusing chiefly on the most important physiological stimulus of β-cells, glucose. We also briefly review some alterations of β-cell Ca2+ homeostasis in Type 2 diabetes. 相似文献
16.
Kawashima S Matsuoka TA Kaneto H Tochino Y Kato K Yamamoto K Yamamoto T Matsuhisa M Shimomura I 《Biochemical and biophysical research communications》2011,(1):E912-540
Objective: Progressive β-cell dysfunction and loss of β-cell mass are fundamental pathogenic features of type 2 diabetes. To examine if anti-diabetic reagents, such as insulin, pioglitazone (pio), and alogliptin (alo), have protective effects on β-cell mass and function in vivo, we treated obese diabetic db/db mice with these reagents. Methods: Male db/db mice were treated with a chow including pio, alo, or both of them from 8 to 16 weeks of age. Insulin glargine (gla) was daily injected subcutaneously during the same period. Results: At 16 weeks of age, untreated db/db mice revealed marked increase of HbA1c level, whereas those treated with pio, pio + alo, or insulin revealed the almost same HbA1c levels as non-diabetic db/m mice. Islet mass evaluated by direct counting in the whole pancreas and insulin content in isolated islets were preserved in pio, pio + alo and gla groups compared with untreated or alo groups, and there was no difference among pio, pio + alo and gla groups. To precisely evaluate islet β-cell functions, islet perifusion analysis was performed. In pio, pio + alo and gla groups, biphasic insulin secretion was preserved compared with untreated or alo groups. In particular, pio + alo as well as gla therapy preserved almost normal insulin secretion, although pio therapy improved partially. To examine the mechanism how these reagents exerted beneficial effects on β-cells, we evaluated expression levels of various factors which are potentially important for β-cell functions by real-time RT-PCR and immunohistochemistry. The results showed that expression levels of MafA and GLP-1 receptor were markedly decreased in untreated and alo groups, but not in pio, pio + alo and gla groups. Conclusion: Combination therapy with pio and alo almost completely normalized β-cell functions in vivo, which was comparable with gla treatment. 相似文献
17.
Masashi Yoshida Shiho Yamato Hitoshi Sugawara Masanobu Kawakami Masafumi Kakei 《Biochemical and biophysical research communications》2010,396(2):304-4132
Voltage-gated potassium channels (Kv channels) play a crucial role in formation of action potentials in response to glucose stimulation in pancreatic β-ells. We previously reported that the Kv channel is regulated by glucose metabolism, particularly by MgATP. We examined whether the regulation of Kv channels is voltage-dependent and mechanistically related with phosphorylation of the channels. In rat pancreatic β-cells, suppression of glucose metabolism with low glucose concentrations of 2.8 mM or less or by metabolic inhibitors decreased the Kv2.1-channel activity at positive membrane potentials, while increased it at potentials negative to −10 mV, suggesting that modulation of Kv channels by glucose metabolism is voltage-dependent. Similarly, in HEK293 cells expressing the recombinant Kv2.1 channels, 0 mM but not 10 mM MgATP modulated the channel activity in a manner similar to that in β-cells. Both steady-state activation and inactivation kinetics of the channel were shifted toward the negative potential in association with the voltage-dependent modulation of the channels by cytosolic dialysis of alkaline phosphatase in β-cells. The modulation of Kv-channel current-voltage relations were also observed during and after glucose-stimulated electrical excitation. These results suggest that the cellular metabolism including MgATP production and/or channel phosphorylation/dephosphorylation underlie the physiological modulation of Kv2.1 channels during glucose-induced insulin secretion. 相似文献
18.
Takeda Y Amano A Noma A Nakamura Y Fujimoto S Inagaki N 《American journal of physiology. Cell physiology》2011,301(4):C792-C803
Glucagon-like peptide-1 (GLP-1) elevates intracellular concentration of cAMP ([cAMP]) and facilitates glucose-dependent insulin secretion in pancreatic β-cells. There has been much evidence to suggest that multiple key players such as the GLP-1 receptor, G(s) protein, adenylate cyclase (AC), phosphodiesterase (PDE), and intracellular Ca(2+) concentration ([Ca(2+)]) are involved in the regulation of [cAMP]. However, because of complex interactions among these signaling factors, the kinetics of the reaction cascade as well as the activities of ACs and PDEs have not been determined in pancreatic β-cells. We have constructed a minimal mathematical model of GLP-1 receptor signal transduction based on experimental findings obtained mostly in β-cells and insulinoma cell lines. By fitting this theoretical reaction scheme to key experimental records of the GLP-1 response, the parameters determining individual reaction steps were estimated. The model reconstructed satisfactorily the dynamic changes in [cAMP] and predicted the activities of cAMP effectors, protein kinase A (PKA), and cAMP-regulated guanine nucleotide exchange factor [cAMP-GEF or exchange protein directly activated by cAMP (Epac)] during GLP-1 stimulation. The simulations also predicted the presence of two sequential desensitization steps of the GLP1 receptor that occur with fast and very slow reaction rates. The cross talk between glucose- and GLP-1-dependent signal cascades for cAMP synthesis was well reconstructed by integrating the direct regulation of AC and PDE by [Ca(2+)]. To examine robustness of the signaling system in controlling [cAMP], magnitudes of AC and PDE activities were compared in the presence or absence of GLP-1 and/or the PDE inhibitor IBMX.(1). 相似文献
19.
Patrik Rorsman Lena Eliasson Takahiro Kanno Quan Zhang Sven Gopel 《Progress in biophysics and molecular biology》2011,107(2):224-235
When exposed to intermediate glucose concentrations (6–16 mol/l), pancreatic β-cells in intact islets generate bursts of action potentials (superimposed on depolarised plateaux) separated by repolarised electrically silent intervals. First described more than 40 years ago, these oscillations have continued to intrigue β-cell electrophysiologists. To date, most studies of β-cell ion channels have been performed on isolated cells maintained in tissue culture (that do not burst). Here we will review the electrophysiological properties of β-cells in intact, freshly isolated, mouse pancreatic islets. We will consider the role of ATP-regulated K+-channels (KATP-channels), small-conductance Ca2+-activated K+-channels and voltage-gated Ca2+-channels in the generation of the bursts. Our data indicate that KATP-channels not only constitute the glucose-regulated resting conductance in the β-cell but also provide a variable K+-conductance that influence the duration of the bursts of action potentials and the silent intervals. We show that inactivation of the voltage-gated Ca2+-current is negligible at voltages corresponding to the plateau potential and consequently unlikely to play a major role in the termination of the burst. Finally, we propose a model for glucose-induced β-cell electrical activity based on observations made in intact pancreatic islets. 相似文献
20.
Deng B 《Journal of mathematical biology》1999,38(1):21-78
In the presence of stimulatory concentrations of glucose, the membrane potential of pancreatic β-cells may experience a transition
from periods of rapid spike-like oscillations alternating with a pseudo-steady state to spike-only oscillations. Insulin secretion
from β-cells closely correlates the periods of spike-like oscillations. The purpose of this paper is to study the mathematical
structure which underlines this transitional stage in a pancreatic β-cell model. It is demonstrated that the transition can
be chaotic but becomes more and more regular with increase in glucose. In particular, the system undergoes a reversed period-doubling
cascade leading to the spike-only oscillations as the glucose concentration crosses a threshold. The transition interval in
glucose concentration is estimated to be extremely small in terms of the rate of change for the calcium dynamics in the β-cells.
The methods are based on the theory of unimodal maps and the geometric and asymptotic theories of singular perturbations.
Received: 25 October 1996/Revised version: 18 August 1997 相似文献