首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Expressions of cell-cycle regulating proteins are altered after stroke. Cell-cycle inhibition has shown dramatic reduction in infarction after stroke. Ceramide can induce cell-cycle arrest by up-regulation of cyclin-dependent kinase (Cdk) inhibitors p21 and p27 through activation of protein phosphatase 2A (PP2A). Tricyclodecan-9-yl-xanthogenate (D609)-increased ceramide levels after transient middle cerebral artery occlusion (tMCAO) in spontaneously hypertensive rat (SHR) probably by inhibiting sphingomyelin synthase (SMS). D609 significantly reduced cerebral infarction and up-regulated Cdk inhibitor p21 and down-regulated phospho-retinoblastoma (pRb) expression after tMCAO in rat. Others have suggested bFGF-induced astrocyte proliferation is attenuated by D609 due to an increase in ceramide by SMS inhibition. D609 also reduced the formation of oxidized phosphatidylcholine (OxPC) protein adducts. D609 may attenuate generation of reactive oxygen species and formation of OxPC by inhibiting microglia/macrophage proliferation after tMCAO (please also see note added in proof: D609 may prevent mature neurons from entering the cell cycle at the early reperfusion, however may not interfere with later proliferation of microglia/ macrophages that are the source of brain derived neurotrophic factor (BDNF) and insulin-like growth factor (IGF-1) in offering protection). It has been proposed that D609 provides benefit after tMCAO by attenuating hypoxia-inducible factor-1α and Bcl2/adenovirus E1B 19 kDa interacting protein 3 expressions. Our data suggest that D609 provides benefit after stoke through inhibition of SMS, increased ceramide levels, and induction of cell-cycle arrest by up-regulating p21 and causing hypophosphorylation of Rb (through increased protein phosphatase activity and/or Cdk inhibition).  相似文献   

2.
Tricyclodecan-9-yl-xanthogenate (D609) is a selective tumor cytotoxic agent. However, the mechanisms of action of D609 against tumor cells have not been well established. Using U937 human monocytic leukemia cells, we examined the ability of D609 to inhibit sphingomyelin synthase (SMS), since inhibition of SMS may contribute to D609-induced tumor cell cytotoxicity via modulating the cellular levels of ceramide and diacylglycerol (DAG). The results showed that D609 is capable of inducing U937 cell death by apoptosis in a dose- and time-dependent manner. The induction of U937 cell apoptosis was associated with an inhibition of SMS activity and a significant increase in the intracellular level of ceramide and decrease in that of sphingomyelin (SM) and DAG, which resulted in an elevation of the ratio between ceramide and DAG favoring the induction of apoptosis. In addition, incubation of U937 cells with C(6)-ceramide and/or H7 (a selective PKC inhibitor) reduced U937 cell viability; whereas pretreatment of the cells with a PKC activator, PMA or 1-oleoyl-2-acetylglycerol (OAG), attenuated D609-induced U937 cell apoptosis. These results suggest that SMS is a potential target of D609 and inhibition of SMS may contribute to D609-induced tumor cell death via modulation of the cellular levels of ceramide and DAG.  相似文献   

3.
Tricyclodecan-9-yl-xanthogenate (D609) is known for its antiviral and antitumor properties. D609 actions are widely attributed to inhibiting phosphatidylcholine (PC)-specific phospholipase C (PC-PLC). D609 also inhibits sphingomyelin synthase (SMS). PC-PLC and/or SMS inhibition will affect lipid second messengers 1,2-diacylglycerol (DAG) and/or ceramide. Evidence indicates either PC-PLC and/or SMS inhibition affected the cell cycle and arrested proliferation, and stimulated differentiation in various in vitro and in vivo studies. Xanthogenate compounds are also potent antioxidants and D609 reduced Aß-induced toxicity, attributed to its antioxidant properties. Zn2+ is necessary for PC-PLC enzymatic activity; inhibition by D609 might be attributed to its Zn2+ chelation. D609 has also been proposed to inhibit acidic sphingomyelinase or down-regulate hypoxia inducible factor-1α; however these are down-stream events related to PC-PLC inhibition. Characterization of the mammalian PC-PLC is limited to inhibition of enzymatic activity (frequently measured using Amplex red assay with bacterial PC-PLC as a standard). The mammalian PC-PLC has not been cloned; sequenced and structural information is unavailable. D609 showed promise in cancer studies, reduced atherosclerotic plaques (inhibition of PC-PLC) and cerebral infarction after stroke (PC-PLC or SMS). D609 actions as an antagonist to pro-inflammatory cytokines have been attributed to PC-PLC. The purpose of this review is to comprehensively evaluate the literature and summarize the findings and relevance to cell cycle and CNS pathologies.  相似文献   

4.
Sphingomyelin plays a very important role both in cell membrane formation that may well have an impact on the development of diseases like atherosclerosis and diabetes. However, the molecular mechanism that governs intracellular and plasma membrane SM levels is largely unknown. Recently, two isoforms of sphingomyelin synthase (SMS1 and SMS2), the last enzyme for SM de novo synthesis, have been cloned. We have hypothesized that SMS1 and SMS2 are the two most likely candidates responsible for the SM levels in the cells and on the plasma membrane. To test this hypothesis, cultured cells were treated with tricyclodecan-9-yl-xanthogenate (D609), an inhibitor of SMS, or with SMS1 and SMS2 siRNAs. Cells were then pulsed with [14C]-L-serine (a precursor of all sphingolipids). SMS activity and [14C]-SM in the cells were monitored. We found that SMS activity was significantly decreased in cells after D609 or SMS siRNA treatment, compared with controls. SMS inhibition by D609 or SMS siRNAs significantly decreased intracellular [14C]-SM levels. We measured cellular lipid levels, including SM, ceramide, phosphatidylcholine, and diacylglycerol and found that SMS1 and SMS2 siRNA treatment caused a significant decrease of SM levels (20% and 11%, respectively), compared to control siRNA treatment; SMS1 but not SMS2 siRNA treatment caused a significant increase of ceramide levels (10%). There was a decreasing tendency for diacylglycerol levels after both SMS1 and SMS2 siRNA treatment, however, it was not statistical significant. As shown by lipid rafts isolation and lipid determination, SMS1 and SMS2 siRNA treatment led to a decrease of SM content in detergent-resistant lipid rafts on the cell membrane. Furthermore, SMS1 and SMS2 siRNA-treated cells had a stronger resistance than did control siRNA-treated cells to lysenin (a protein that causes cell lysis due to its affinity for plasma membrane SM). These results indicate that both SMS1 and SMS2 contribute to SM de novo synthesis and control SM levels in the cells and on the cell membrane including plasma membrane, implying an important relationship between SMS activity and cell functions.  相似文献   

5.
Sphingomyelin synthase (SMS), which comprises of two isozymes, SMS1 and SMS2, is the only enzyme that generates sphingomyelin (SM) by transferring phosphocholine of phosphatidylcholine to ceramide in mammals. Conversely, ceramide is generated from SM hydrolysis via sphingomyelinases (SMases), ceramide de novo synthesis, and the salvage pathway. The biosynthetic pathway for SM and ceramide content by SMS and SMase, respectively, is called “SM cycle.” SM forms a SM-rich microdomain on the cell membrane to regulate signal transduction, such as proliferation/survival, migration, and inflammation. On the other hand, ceramide acts as a lipid mediator by forming a ceramide-rich platform on the membrane, and ceramide exhibits physiological actions such as cell death, cell cycle arrest, and autophagy induction. Therefore, the regulation of ceramide/SM balance by SMS and SMase is responsible for diverse cell functions not only in physiological cells but also in cancer cells. This review outlines the implications of ceramide/SM balance through “SM cycle” in cancer progression and prevention. In addition, the possible involvement of “SM cycle” is introduced in anti-cancer tumor immunity, which has become a hot topic to innovate a more effective and safer way to conquer cancer in recent years.  相似文献   

6.
Sphingomyelin synthase (SMS) produces sphingomyelin while consuming ceramide (a negative regulator of cell proliferation) and forming diacylglycerol (DAG) (a mitogenic factor). Therefore, enhanced SMS activity could favor cell proliferation. To examine if dysregulated SMS contributes to leukemogenesis, we measured SMS activity in several leukemic cell lines and found that it is highly elevated in K562 chronic myelogenous leukemia (CML) cells. The increased SMS in K562 cells was caused by the presence of Bcr-abl, a hallmark of CML; stable expression of Bcr-abl elevated SMS activity in HL-60 cells while inhibition of the tyrosine kinase activity of Bcr-abl with Imatinib mesylate decreased SMS activity in K562 cells. The increased SMS activity was the result of up-regulation of the Sms1 isoform. Inhibition of SMS activity with D609 (a pharmacological SMS inhibitor) or down-regulation of SMS1 expression by siRNA selectively inhibited the proliferation of Bcr-abl-positive cells. The inhibition was associated with an increased production of ceramide and a decreased production of DAG, conditions that antagonize cell proliferation. A similar change in lipid profile was also observed upon pharmacological inhibition of Bcr-abl (K526 cells) and siRNA-mediated down-regulation of BCR-ABL (HL-60/Bcr-abl cells). These findings indicate that Sms1 is a downstream target of Bcr-abl, involved in sustaining cell proliferation of Bcr-abl-positive cells.  相似文献   

7.
This study was designed to analyze whether ceramide, a bioeffector of growth suppression, plays a role in the regulation of telomerase activity in A549 cells. Telomerase activity was inhibited significantly by exogenous C(6)-ceramide, but not by the biologically inactive analog dihydro-C(6)-ceramide, in a time- and dose-dependent manner, with 85% inhibition produced by 20 microm C(6)-ceramide at 24 h. Moreover, analysis of phosphatidylserine translocation from the inner to the outer plasma membrane by flow cytometry and of poly(ADP-ribose) polymerase degradation by Western blotting showed that ceramide treatment (20 microm for 24 h) had no apoptotic effects. Trypan blue exclusion, [(3)H]thymidine incorporation, and cell cycle analyses, coupled with clonogenic cell survival assay on soft agar, showed that ceramide treatment with a 20 microm concentration at 24 h resulted in the cell cycle arrest of the majority of the cell population at G(0)/G(1) with no detectable cell death. These results suggest that the inhibition of telomerase by ceramide is not a consequence of cell death but is correlated with growth arrest. Next, to determine the role of endogenous ceramide in telomerase modulation, A549 cells were transiently transfected with an expression vector containing the full-length bacterial sphingomyelinase cDNA (b-SMase). The overexpression of b-SMase, but not exogenously applied purified b-SMase enzyme, resulted in significantly decreased telomerase activity compared with controls, showing that the increased endogenous ceramide is sufficient for telomerase inhibition. Moreover, treatment of A549 cells with daunorubicin at 1 microm for 6 h resulted in the inhibition of telomerase, which correlated with the elevation of endogenous ceramide levels and growth arrest. Finally, stable overexpression of human glucosylceramide synthase, which attenuates ceramide levels by converting ceramide to glucosylceramide, prevented the inhibitory effects of C(6)-ceramide and daunorubicin on telomerase. Therefore, these results provide novel data showing for the first time that ceramide is a candidate upstream regulator of telomerase.  相似文献   

8.
The measurement of cell proliferation and cell viability using 5'bromo-2'deoxy-uridine (BrdU) labelling has been described in several cell types and species. The aim of this study was to adapt this technique to equine embryos and to compare the index of DNA replication (S-phase) between equine and caprine embryos. Seventeen equine embryos were recovered at day 6.5 post-ovulation and 20 caprine embryos were recovered at day 7 after the onset of estrus. Equine embryos were incubated during 1h at 39 degrees C in PBS containing 1mM of BrdU. Embryos were then treated in 0.05% trypsin during 15 min at 39 degrees C to permeabilise the capsule, and then embryos were rinsed in PBS containing 10% of foetal calf serum. After washing, embryos were immediately fixed in 2.5% paraformaldehyde with 0.3M NaOH during 15 min at ambient temperature. The S-phase was detected by immunocytochemistry technique. In caprine embryos, BrdU was visualised by the same technique but without the trypsin treatment. The percentage of cells (+/-S.E.M.) with BrdU incorporated into newly synthesised DNA strands was significantly higher in equine embryos (74+/-1) than in caprine (38+/-2). Our results demonstrated that BrdU incorporation assay can be used in equine embryos. This assay allows the determination of the proliferation index of live cells and could be used as an additional tool for evaluating the viability of embryos. The high percentage of cells incorporating BrdU during 1h of incubation with BrdU suggests that in comparison with the caprine embryos the cellular activity of proliferation is more intense in equine embryos and suggests that the cellular cycle is shorter in equine embryos.  相似文献   

9.
目的观察缺血缺氧损伤对星形胶质细胞细胞活化和细胞周期的影响。方法用流式细胞仪及BrdU掺入法检测缺血缺氧后不同时间点星形胶质细胞细胞周期变化和细胞的增殖活力;用荧光免疫细胞化学技术测定胶质细胞纤维酸性蛋白(GFAP)及细胞周期蛋白cyclinD1的表达水平。结果体外缺血缺氧损伤后星形胶质细胞S期较正常组明显增高,6h达高峰,BrdU掺入法显示损伤后6h星形胶质细胞的增殖活力最高,而随后S期细胞数目及细胞增殖活力都呈下降趋势。在缺血缺氧早期,GFAP阳性染色增强,6h最高;缺血缺氧12h后GFAP阳性染色变弱,而cyclinD1的表达在损伤后逐渐增加,在24h时达高峰。结论缺血缺氧损伤激活星形胶质细胞,使其进入新的细胞周期,出现细胞的增殖反应;cyclinD1参与了损伤后星形胶质细胞的修复和增殖;细胞周期事件与星形胶质细胞的增殖活化密切相关。  相似文献   

10.
Ceramide has emerged as a pleiotropic signal mediator of cellular responses including differentiation, proliferation, cell cycle arrest and apoptosis. In the present study we evaluated the effect of cell permeant ceramide analogues on ligand-induced tyrosine phosphorylation of the EGF receptor (EGFR), phospholipase Cy (PLCgamma) activity and cell proliferation. Treatment with N-acetylsphingosine (C2-cer) and N-hexanoylceramide (C6-cer) prevented EGF-induced tyrosine trans-phosphorylation of the receptor in two different cell lines overexpressing the human EGFR (A431 and EGF-T17 cells). In contrast, treatment of A431 and EGFR-T17 cells with C2-cer or C6-cer did not affect the ligand binding capacity of the receptor, an effect that was however observed after TPA-induced activation of PKC. In addition EGF-stimulated PLCgamma activity was transiently decreased in A431 cells treated with C6-cer and only a modest, albeit significant reduction on ligand-induced 3H-InsP3 generation was observed in EGFR-T17 cells pretreated with ceramide. We also examined the effect of C2-cer on serum (A431)- or EGF (EGFR-T 17)-induced cell proliferation. Treatment of EGFR-TI7 cells with C2-cer (0.1-10 microM) did not affect cell viability, but prevented EGF-induced 3H-thymidine incorporation in a dose-dependent manner. In contrast, 3H-thymidine incorporation in serum-stimulated A431 cells decreased only at the higher doses of C2-cer used (1-10 microM), being this effect accompanied by a slight, albeit significant (20-25%), reduction in cell viability.  相似文献   

11.
The success of somatic cell nuclear transfer depends critically on the cell cycle stage of the donor nucleus and the recipient cytoplast. Karyoplasts in the G0 or G1 stages are considered to be the most suitable for nuclear transfer. In the present study, we used a reversible cell cycle inhibitor, mimosine, to synchronize porcine granulosa cells (GCs) in G1 phase of the cell cycle. Porcine GCs were obtained from 3 to 5mm ovarian follicles of slaughtered gilts. The effect of mimosine on the proliferation, DNA synthesis and cell cycle stage of cultured cells was examined by incorporation of radiochemical 3H-thymidine, immunocytochemical detection of incorporated thymidine analogue 5-bromo-2-deoxyuridine (BrdU) and flow cytometry analyses. Mimosine treatment of pig GCs for 24h resulted in proliferation arrest in vitro. Treatment with 0.5mM mimosine significantly (P<0.05) inhibited 3H-thymidine incorporation after 24h of culture (4.6% +/- 0.1) and after 24h of culture in serum deprived medium (41.3% +/- 3.8), in comparison to controls (100%). Inhibition of DNA synthesis was further confirmed by immunocytochemical and flow cytometry analyses. Compared with controls (78.2%), mimosine treatment for 24h increased the proportion of G0/G1 cells in the culture (85.7%) more effectively than serum starvation (SS; 81.2%). Mimosine-caused G1 arrest of porcine GCs was fully reversible and cells continued to proliferate after removing the drug, especially when they were stimulated by EGF.  相似文献   

12.
目的:探讨小分子化合物D609对脑神经瘤细胞Neuro-2a的生长抑制及诱导细胞周期阻滞的效应,并初步研究其机制。方法:采用CCK-8法检测D609对Neuro-2a细胞的生长抑制作用;利用流式细胞术(FACS)检测D609处理对细胞周期进程的影响;利用免疫印迹实验(Western blot)检测不同浓度的D609处理后,细胞裂解液中细胞周期蛋白抑制因子p27的表达水平。结果:CCK-8的实验结果显示,加入150μmol/L D609处理72小时后,细胞生长受到明显地抑制,且伴有剂量依赖效应;流式细胞术的结果表明,D609处理使细胞周期阻滞在G0/G1期;免疫印迹的结果表明药物处理提升了p27的表达,且随药物浓度升高其表达亦增强。结论:D609可以有效地抑制Neuro-2a细胞的生长;进一步研究表明药物处理可以提升p27的表达水平并可以诱导将细胞阻滞在G0/G1期。因此,此研究将为脑神经瘤的治疗提供借鉴。  相似文献   

13.
目的:雄性原始生殖细胞在植入生殖嵴后,会从有丝分裂退出进入静息状态,在这一过程中伴随着细胞内代谢状态的改变,本研究旨在体解析原始生殖细胞增殖的改变与细胞代谢之间的因果关系。方法:通过体内Brdu掺入实验明确不同时间点雄性生殖细胞的增殖状态;分析比较增殖状态和静息状态原始生殖细胞糖酵解相关基因的表达;利用腹腔注射HK2特异性抑制剂2-Deoxy-D-glucose (2-DG),构建糖酵解抑制小鼠模型;通过免疫荧光与qPCR分析抑制糖酵解后原始生殖细胞的表型。结果:免疫荧光结果显示雄性生殖细胞增殖停滞从E13.5开始,至E15.5完全停滞;qPCR和Western Blot显示在此过程中HK2的表达是逐渐降低的;在E11.5抑制小鼠胚胎中的糖酵解过程,可以在E13.5检测到雄性PGCs增殖下降,并且可以抑制多能性基因如Sox2、Oct4的表达。结论:研究发现,E11.5-E13.5雄性原始生殖细胞内增殖与多能性的维持需要糖酵解。改变胚胎糖酵解水平可以影响原始生殖细胞增殖分化进程。  相似文献   

14.
The cytotoxic effects of several chemotherapeutic drugs have been linked to elevated de novo ceramide biosynthesis. However, the relationship between the intracellular site(s) of ceramide accumulation and cytotoxicity is poorly understood. Here we examined the relationship between the site of ceramide deposition and inhibition of protein translation and induction of apoptosis by the antitumor/antiviral xanthate, D609. In Chinese hamster ovary (CHO)-K1, HEK-293, and NIH-3T3 cells, D609 caused rapid (1-5 min) and sustained eukaryotic initiation factor 2alpha (eIF2alpha) phosphorylation followed by apoptosis after 24 h. Concurrently, D609 stimulated de novo ceramide synthesis and increased ceramide mass 2-fold by 2 h in CHO-K1 cells. In D609-treated CHO-K1 cells, sphingomyelin synthesis was stimulated by brefeldin A, and C5-DMB-ceramide transport to the Golgi apparatus was blocked, indicating ceramide accumulation in the endoplasmic reticulum (ER). However, D609-mediated eIF2alpha phosphorylation, inhibition of protein synthesis, and apoptosis in CHO-K1 cells were not attenuated by fumonisin B1 or l-cycloserine. Interestingly, short-chain ceramide promoted eIF2alpha phosphorylation and inhibited protein synthesis in CHO-K1 cells, indicating that the effectiveness of endogenous ceramide could be limited by access to signaling pathways. Thus, expansion of the ER ceramide pool by D609 was not implicated in early (eIF2alpha phosphorylation) or late (apoptotic) cytotoxic events.  相似文献   

15.
The precise role of ceramide in NF-kappaB signaling remains unclear. The recent observation of differential sphingomyelin synthase (SMS) activity in normal (low SMS) versus SV40-transformed (high SMS) WI38 human lung fibroblasts provides an opportunity to assess the involvement of ceramide and SMS in NF-kappaB activation. Treatment of normal WI38 fibroblasts with bacterial sphingomyelinase resulted in a 4-fold elevation of ceramide and blocked NF-kappaB activation by serum stimulation. Such inhibition was not observed in SV40-transformed fibroblasts. Under regular growth conditions, after sphingomyelinase was washed out, normal WI38 did not show SM re-synthesis nor NF-kappaB activation. In SV40-WI38, on the other hand, sphingomyelinase washout induced resynthesis of SM due to the action of SMS on ceramide generated at the plasma membrane. NF-kappaB activation correlated with SM resynthesis. This activation was abrogated by D609, which inhibited SM resynthesis but not the initial formation of ceramide. The differential activity of SMS may explain the effects of ceramide in NF-kappaB signaling: in the absence of significant SMS activity, ceramide inhibits NF-kappaB, whereas with high SMS, the conversion of the ceramide signal to a diacylglycerol signal by the action of SMS stimulates NF-kappaB. These results also suggest a role for SMS in regulating NF-kappaB.  相似文献   

16.
Abstract. Objectives: Previously, we have found that the ClC‐3 chloride channel is involved in endothelin‐1 (ET‐1)‐induced rat aortic smooth muscle cell proliferation. The present study was to investigate the role of ClC‐3 in cell cycle progression/distribution and the underlying mechanisms of proliferation. Materials and methods: Small interference RNA (siRNA) is used to silence ClC‐3 expression. Cell proliferation, cell cycle distribution and protein expression were measured or detected with cell counting, bromodeoxyuridine (BrdU) incorporation, Western blot and flow cytometric assays respectively. Results: ET‐1‐induced rat basilar vascular smooth muscle cell (BASMC) proliferation was parallel to a significant increase in endogenous expression of ClC‐3 protein. Silence of ClC‐3 by siRNA inhibited expression of ClC‐3 protein, prevented an increase in BrdU incorporation and cell number induced by ET‐1. Silence of ClC‐3 also caused cell cycle arrest in G0/G1 phase and prevented the cells’ progression from G1 to S phase. Knockdown of ClC‐3 potently inhibited cyclin D1 and cyclin E expression and increased cyclin‐dependent kinase inhibitors (CDKIs) p27KIP and p21CIP expression. Furthermore, ClC‐3 knockdown significantly attenuated phosphorylation of Akt and glycogen synthase kinase‐3β (GSK‐3β) induced by ET‐1. Conclusion: Silence of ClC‐3 protein effectively suppressed phosphorylation of the Akt/GSK‐3β signal pathway, resulting in down‐regulation of cyclin D1 and cyclin E, and up‐regulation of p27KIP and p21CIP. In these BASMCs, integrated effects lead to cell cycle G1/S arrest and inhibition of cell proliferation.  相似文献   

17.
Recently, dimethyl sulfoxide (DMSO) has been used as a convenient cryoprotectant for stem cells in stem cell transplantation using allogenic peripheral blood or umbilical cord blood. As the stem cells have a multipotency, clarification of the extent of cell proliferation after transplantation is difficult. In the present study, DMSO gradually induced G(0)/G(1) arrest in mouse leukemia L(1210) cells with good cell viability. After removal of DMSO, the cells proliferated appropriately, resulting in expression of the DNA-synthesizing enzymes thymidylate synthase and thymidine kinase within 6h, and the cells entering into S phase within 12h. The sequence was followed by the marked activation of both enzymes within 24h and the increase of bromodeoxyuridine (BrdU) immunoreactive (S phase) cells with rapid cell proliferation within 36 h. In conclusion, mouse leukemia L(1210) cells, which were treated with 1.5% DMSO for 96 h, tolerated the treatment and reversed the cell cycle arrest within 36 h.  相似文献   

18.

Background

Cytokine administration is a potential therapy for acute liver failure by reducing inflammatory responses and favour hepatocyte regeneration. The aim of this study was to evaluate the role of interleukin-1 receptor antagonist (IL-1ra) during liver regeneration and to study the effect of a recombinant human IL-1ra on liver regeneration.

Methods

We performed 70%-hepatectomy in wild type (WT) mice, IL-1ra knock-out (KO) mice and in WT mice treated by anakinra. We analyzed liver regeneration at regular intervals by measuring the blood levels of cytokines, the hepatocyte proliferation by bromodeoxyuridin (BrdU) incorporation, proliferating cell nuclear antigen (PCNA) and Cyclin D1 expression. The effect of anakinra on hepatocyte proliferation was also tested in vitro using human hepatocytes.

Results

At 24h and at 48h after hepatectomy, IL-1ra KO mice had significantly higher levels of pro-inflammatory cytokines (IL-6, IL-1β and MCP-1) and a reduced and delayed hepatocyte proliferation measured by BrdU incorporation, PCNA and Cyclin D1 protein levels, when compared to WT mice. IGFBP-1 and C/EBPβ expression was significantly decreased in IL-1ra KO compared to WT mice. WT mice treated with anakinra showed significantly decreased levels of IL-6 and significantly higher hepatocyte proliferation at 24h compared to untreated WT mice. In vitro, primary human hepatocytes treated with anakinra showed significantly higher proliferation at 24h compared to hepatocytes without treatment.

Conclusion

IL1ra modulates the early phase of liver regeneration by decreasing the inflammatory stress and accelerating the entry of hepatocytes in proliferation. IL1ra might be a therapeutic target to improve hepatocyte proliferation.  相似文献   

19.
There is an urgency to find new treatments for the devastating epidemic of diabetes. Pancreatic β-cells viability and function are impaired in the two most common forms of diabetes, type 1 and type 2. Regeneration of pancreatic β-cells has been proposed as a potential therapy for diabetes. In a preliminary study, we screened a collection of marine products for β-cell proliferation. One unique compound (epoxypukalide) showed capability to induce β-cell replication in the cell line INS1 832/13 and in primary rat cell cultures. Epoxypukalide was used to study β-cell proliferation by [3H]thymidine incorporation and BrdU incorporation followed by BrdU/insulin staining in primary cultures of rat islets. AKT and ERK1/2 signalling pathways were analyzed. Cell cycle activators, cyclin D2 and cyclin E, were detected by western-blot. Apoptosis was studied by TUNEL and cleaved caspase 3. β-cell function was measured by glucose-stimulated insulin secretion. Epoxypukalide induced 2.5-fold increase in β-cell proliferation; this effect was mediated by activation of ERK1/2 signalling pathway and upregulation of the cell cycle activators, cyclin D2 and cyclin E. Interestingly, epoxypukalide showed protection from basal (40% lower versus control) and cytokine-induced apoptosis (80% lower versus control). Finally, epoxypukalide did not impair β-cell function when measured by glucose-stimulated insulin secretion. In conclusion, epoxypukalide induces β-cell proliferation and protects against basal and cytokine-mediated β-cell death in primary cultures of rat islets. These findings may be translated into new treatments for diabetes.  相似文献   

20.
Previous work has suggested that a major contributor to neuronal cell death is the aberrant induction of the cell cycle process, as indicated by an up-regulation of cyclin D. In order to examine the temporal and spatial relationship of cyclin D in a model of acute neurodegeneration, the hippocampal toxicant, trimethyltin (TMT; 2.0 mg/kg), was administered to 21-day old CD−1 male mice and the level and cellular localization of cyclin D1 examined. Within 24 h following TMT, dentate granule cells of the hippocampus showed evidence of neuronal necrosis resulting in severe cell loss over a 3-day period. The pyramidal cell layer was spared with only sparse punctate neuronal necrosis. Microglia response was seen at 72 h with ameboid microglia present in the dentate and ramified microglia present in the pyramidal cell layer, contributing to the elevation seen in TNF-alpha mRNA levels. A transient elevation was seen in mRNA levels for cyclin D1 over 48–72 h post-TMT. Immunohistochemistry demonstrated a transient increase in staining for cyclin D1 in CA1 pyramidal neurons as early as 24 h. Punctate staining occurred in neurons throughout the dentate at 48 h. BrdU positive cells were present along the inner blades of the dentate in control animals. Following TMT exposure, an increase was seen in both the number of neurons stained and a diffusion of the staining pattern into the full dentate region. Thus, in TMT-induced neurodegeneration, cyclin D1 is not expressed in the vulnerable neurons but rather in neurons spared from degeneration. This expression pattern appears to not be linked to an increase in the cellular processes for proliferation as the majority of BrdU positive cells were present in the region of neuronal damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号