首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Seed production and patterns of sex allocation were studied in female and hermaphroditic plants in two gynodioecious populations of Geranium sylvaticum (Geraniaceae). Females produced more flower buds and seeds than hermaphrodites in one of the two study populations. The other female traits measured (pistil biomass, seed number per fruit, individual seed mass) did not differ between the gender morphs. The relative seed fitness of hermaphrodites differed between the study populations, with hermaphrodites gaining less of their fitness through female function in the population with a high frequency of females. However, the amount and size of pollen produced by hermaphrodites did not differ between populations. The number of flower buds was positively correlated with seed production in females, whereas in hermaphrodites a positive correlation between number of buds and seed production was found in only one of the two study populations. These results suggest that fitness gain through female function is labile in hermaphrodites of this species, and is probably affected by environmental factors such as the sex ratio of the population.  相似文献   

2.
In many gynodioecious species, sex determination involves both cytoplasmic male‐sterility (CMS) genes and nuclear genes that restore male function. Differences in fitness among genotypes affect the dynamics of those genes, and thus that of gynodioecy. We used a molecular marker to discriminate between hermaphrodites with and without a CMS gene in gynodioecious Raphanus sativus. We compared fitness through female function among the three genotypes: females, hermaphrodites with the CMS gene and those without it. Although there was no significant difference among the genotypes in seed size, hermaphrodites without the CMS gene produced significantly more seeds, and seeds with a higher germination rate than the other genotypes, suggesting no fitness advantage for females and no benefit to bearing the CMS gene. Despite the lack of fitness advantage for females in the parameter values we estimated, a theoretical model of gynodioecy shows it can be maintained if restorer genes impose a cost paid in pollen production. In addition, we found that females invest more resources into female reproduction than hermaphrodites when they become larger. If environmental conditions enable females to grow larger this would facilitate the dynamics of CMS genes.  相似文献   

3.
Sexual dimorphism is common in plants and animals. Although this dimorphism is often assumed to be adaptive, natural selection has rarely been measured on sexually dimorphic traits of plants. We measured phenotypic selection via seed set on two floral and four carbon uptake traits of female and hermaphrodite Lobelia siphilitica. Because females can reproduce only via seeds, which are costlier than pollen, we predicted that females with smaller flowers and enhanced carbon uptake would have higher fitness, resulting in either sex morph-specific directional selection or stabilizing selection for different optimal trait values in females and hermaphrodites. We found that directional selection on one carbon uptake trait differed between females and hermaphrodites. We did not detect significant stabilizing selection on traits of either sex morph. Our results provide little support for the hypothesis that sexual dimorphism in gynodioecious plants evolved in response to sex morph-specific selection.  相似文献   

4.
1. Oviposition choices can profoundly affect offspring performance. Oviposition decisions of the dipteran pre‐dispersal seed predator, Hylemya sp. (Diptera: Anthomyiidae), when choosing among sex morphs of their host‐plant—Polemonium foliosissimum Hook—were evaluated. Polemonium foliosissimum is gynodioecious, with female and hermaphrodite sex morphs that differ in flower size. 2. It was asked: Do female flies preferentially oviposit on hermaphrodite plants and, if so, are oviposition choices correlated with flower size? Is larval survivorship higher on hermaphrodite plants and, if so, is larval success correlated with flower size? Can the differences in oviposition and/or larval success be explained by slight differences in flowering phenology between the sexes? 3. Hermaphrodite flowers received 45% more Hylemya eggs than females. Although hermaphrodites had larger petals and sepals than females, egg loads were not correlated with petal or sepal size. Larval survival was 30% greater on hermaphrodites than females and higher on plants with larger sepals. However, the difference in sepal area between genders did not fully explain larval survival differences. Egg numbers declined over weeks, but differences in egg loads between the sex morphs were not attributable to a slight phenological delay of females. Larval survival declined over the season; however, larval survival differences between sex morphs were consistent. 4. Hylemya preferentially oviposited on hermaphrodites where their larvae had a significantly greater survival rate compared with females. The present results add to the knowledge that intra‐specific choices have consequences for phytophagous insects and that the relationship between antagonists and their gynodioecious host plants is complex.  相似文献   

5.
Costs of reproduction are expected to be ubiquitous in wild animal populations and understanding the drivers of variation in these costs is an important aspect of life-history evolution theory. We use a 43 year dataset from a wild population of red deer to examine the relative importance of two factors that influence the costs of reproduction to mothers, and to test whether these costs vary with changing ecological conditions. Like previous studies, our analyses indicate fitness costs of lactation: mothers whose calves survived the summer subsequently showed lower survival and fecundity than those whose calves died soon after birth, accounting for 5% and 14% of the variation in mothers'' survival and fecundity, respectively. The production of a male calf depressed maternal survival and fecundity more than production of a female, but accounted for less than 1% of the variation in either fitness component. There was no evidence for any change in the effect of calf survival or sex with increasing population density.  相似文献   

6.
MethodsTo test the severity and consequences of this type of pollinator discrimination in Geranium maculatum, experimental populations with the range of sex ratios observed in nature were created, ranging from 13 % to 42 % females. Pollinators were observed in order to measure the strength of discrimination, and pollen deposition and seed production of both sexes were measured to determine the fitness consequences of this discrimination. Additionally a comparison was made across the sex ratios to determine whether discrimination was frequency-dependent.ConclusionsThe results suggest that pollinator discrimination negatively affects females'' relative fitness when they are rare. Thus, the initial spread of females in a population, the first step in the evolution of gynodioecy, may be made more difficult due to pollinator discrimination.  相似文献   

7.
Lactation is the most energetically expensive component of reproduction in mammals. Theory predicts that reproducing females will adjust their behaviour to compensate for increased nutritional demands. However, experimental tests are required, since comparisons of the behaviour of naturally reproducing and non-reproducing females cannot distinguish between true costs of reproduction, individual differences or seasonal variation. We experimentally manipulated reproduction in free-ranging, eastern grey kangaroos (Macropus giganteus), using a fertility control agent. Our novel field experiment revealed that females altered their behaviour in direct response to the energetic demands of reproduction: reproducing females increased bite rates, and thus food intake, when the energetic demands of lactation were highest. Reproducing females did not reduce the time spent on vigilance for predators, but increased their forage intake on faecal-contaminated pasture, thereby increasing the risk of infection by gastrointestinal parasites-a largely unrecognized potential cost of reproduction.  相似文献   

8.
Background and AimsMost angiosperms rely on pollinators to transport pollen and effect fertilization. While some floral visitors are effective pollinators, others act as thieves, consuming pollen but effecting little pollination in return. The importance of pollen theft in male and female reproductive success has received little attention. Here, we examined if pollen consumption by flies altered pollen receipt and exacerbated pollen limitation for a bumblebee-pollinated plant, Polemonium foliosissimum (Polemoniaceae).MethodsTo examine the effect of pollen-thieving flies, we took a three-pronged approach. First, we used single-visit observations to quantify pollen removal and pollen deposition by flies and bumblebees. Second, we manipulated pollen in the neighbourhood around focal plants in two years to test whether pollen reduction reduced pollen receipt. Third, we combined pollen reduction with hand-pollination to test whether pollen thieving exacerbated pollen limitation. Polemonium foliosissimum is gynodioecious in most populations in the Elk Mountains of central Colorado, USA. Thus, we also tested whether pollen theft affected hermaphrodites and females differently.ResultsFlies removed significantly more pollen and deposited less pollen per visit than did bumblebees. Reduction of pollen in the neighbourhood around focal plants reduced pollen receipt in both years but only nearly significantly so in 2015. In 2016, plants were significantly pollen-limited; hand-pollination significantly increased seeds per fruit for both hermaphrodites and females. However, the reduction of pollen around focal plants did not exacerbate pollen limitation for either hermaphrodites or females.ConclusionsOur results suggest that plants tolerate significant consumption of pollen by thieves and pollinators by producing ample pollen to feed both and fertilize available ovules. Our results demonstrate that pollen limitation in P. foliosissimum is driven by lack of effective pollinators rather than lack of pollen. Teasing out these effects elucidates the relative importance of drivers of reproductive success and thus the expected response to selection by different floral visitors.  相似文献   

9.
Allocation trade-offs should be measured as opportunity costs, estimating what individuals sacrifice in one function by allocating to others. We investigated opportunity costs of male function in gynodioecious Phacelia linearis, asking whether nutrient limitation contributes to them. This hypothesis predicts that hermaphrodites experience greater nutrient stress than females, and that hermaphrodite disadvantages in production might decrease with nutrient supply. We cultivated hermaphrodites and females at two nutrient levels, scoring individuals for prereproductive leaf number at 5 wk, and biomass, nitrogen concentration, and fruit and seed production at 16 wk. Nutrient treatments caused final growth differences of two orders of magnitude. No gender difference appeared at 5 wk, but at 16 wk hermaphrodites produced less stem, leaf, and inflorescence biomass than females, and made fewer fruits. Hermaphrodites' shoot-size disadvantage was marginally significantly more severe at low nutrients than high nutrients. Significant gender x nutrient interactions for root fraction and whole-plant nitrogen concentration indicate greater nutrient stress in hermaphrodites than females. Hermaphrodites also acquired less total nitrogen than females. Nutrient limitation contributes to opportunity costs of male function, but there must be other contributors. Possibilities include limitations in other resources, gender effects on morphology, and genetic trade-offs not directly involving allocation or morphology.  相似文献   

10.

Background and Aims

Variation in inbreeding depression (δ) among individual plants is considered to play a central role in mating system evolution and population genetics. Moreover, such variation could be linked to individual susceptibility to pollen limitation (PL) because those individuals strongly affected by δ for seed production will require more outcross pollen for setting a given number of fruits or seeds. However, no study has tested explicitly for associations between PL and δ at the individual plant level. This study assesses the extent of among-individual variation in PL and δ, the consistency of δ across life stages, and the relationships between individual PL and δ in the mixed-mating shrub Myrtus communis.

Methods

Controlled hand-pollinations were performed in a natural M. communis population. Marked flowers were monitored until fruit production and a greenhouse experiment was conducted with the seeds produced.

Key Results

Compared with selfing, outcross-pollination enhanced seed number per fruit, germination rate and seedling growth, but did not enhance fruit-set. Only seed number per fruit was pollen limited and, thus, cumulative pollen limitation depended more on pollen quality (outcross pollen) than on quantity. The effects of δ varied considerably across life stages and individual plants. Cumulative δ was high across individuals (mean δ = 0·65), although there were no positive correlations between δ values at different life stages. Interestingly, maternal plants showing stronger δ for seed production were more pollen limited, but they were also less affected by δ for seedling growth because of a seed size/number trade-off.

Conclusions

Results show a general inconsistency in δ across life stages and individuals, suggesting that different deleterious loci are acting at different stages. The association between δ and PL at the individual level corroborates the idea that pollen limitation may be ‘genotype-dependent’ regardless of other factors.  相似文献   

11.
In dioecious species, females typically allocate more resources to reproduction and incur greater costs of reproduction than males. In gynodioecious species, sex-based differences in reproductive allocation (RA) and costs have been less studied. Such knowledge, however, is relevant to address how females establish and increase in frequency in populations. We examine RA and reproductive costs by comparing fruit set, the proportion of biomass allocated to reproduction, and the responses of fruit set and vegetative growth to shoot defoliation in females and hermaphrodites in gynodioecious Leucopogon melaleucoides. Relative to hermaphrodites, females exhibited a two-fold fruit set advantage. Female fruit set increased proportionately with flower number, but hermaphrodite fruit set was reduced on plants with more flowers. Sex-based differences in allocation to other traits were small. Thus, female RA at flowering was similar to hermaphrodite RA, but was 1.4-fold greater at fruiting. Relative to controls, defoliation reduced fruit set and the percentage of shoots that produced new vegetative growth similarly in both sexes. However, females had a lower proportion of shoots with new growth overall. Further, defoliation on females reduced the dry mass of new growth by 44% compared with controls, whereas hermaphrodites were not affected. These results indicate a trade-off between reproduction and vegetative growth, and greater female costs of reproduction, particularly under resource-limiting conditions. In the absence of compensatory traits to offset higher female reproductive costs, such trade-offs have the potential to retard the spread of females in gynodioecious populations.  相似文献   

12.
BACKGROUND AND AIMS: For the maintenance of gynodioecy (i.e. the coexistence of female and hermaphroditic plants), females need to compensate for the lack of pollen production through higher seed production or better progeny quality compared to hermaphrodites. In Geranium sylvaticum, females produce more seeds per flower than hermaphrodites. This difference in seed production might be modified by biological interactions with pollinators and herbivores that may favour one sex and thus affect the maintenance of gynodioecy. METHODS: Sexual dimorphism in flower size and flowering phenology, and in attractiveness to pollinators, pre-dispersal seed predators and floral herbivores were examined in natural populations of G. sylvaticum. KEY RESULTS: Pollinators preferred hermaphrodites 25 % more often than females in two of the three study populations, and floral herbivores attacked hermaphrodites 15 % more often than females in two of the six study populations. These preferences might be explained by the larger flower size of hermaphrodites. In contrast, seed predators did not prefer either sex. CONCLUSIONS: The data suggest that pollinator preference does not benefit females, whereas the higher floral herbivory of hermaphrodites might enhance the maintenance of females in G. sylvaticum. Thus, although the data support the view that ecological factors may contribute to the maintenance of gynodioecy, they also suggest that these contributions may vary across populations and that they may function in opposite directions.  相似文献   

13.
14.

Background and Aims

Reproductive costs imply trade-offs in resource distribution at the physiological level, expressed as changes in future growth and/or reproduction. In dioecious species, females generally endure higher reproductive effort, although this is not necessarily expressed through higher somatic costs, as compensatory mechanisms may foster resource uptake during reproduction.

Methods

To assess effects of reproductive allocation on vegetative growth and physiological response in terms of costs and compensation mechanisms, a manipulative experiment of inflorescence bud removal was carried out in the sexually dimorphic species Corema album. Over two consecutive growing seasons, vegetative growth patterns, water status and photochemical efficiency were measured to evaluate gender-related differences.

Key Results

Suppression of reproductive allocation resulted in a direct reduction in somatic costs of reproduction, expressed through changes in growth variables and plant physiological status. Inflorescence bud removal was related to an increase in shoot elongation and water potential in male and female plants. The response to inflorescence bud removal showed gender-related differences that were related to the moment of maximum reproductive effort in each sexual form: flowering in males and fruiting in females. Delayed costs of reproduction were found in both water status and growth variables, showing gender-related differences in resource storage and use.

Conclusions

Results are consistent with the existence of a trade-off between reproductive and vegetative biomass, indicating that reproduction and growth depend on the same resource pool. Gender-related morphological and physiological differences arise as a response to different reproductive resource requirements. Delayed somatic costs provide evidence of gender-related differences in resource allocation and storage. Adaptive differences between genders in C. album may arise through the development of mechanisms which compensate for the cost of reproduction.  相似文献   

15.
Many flowering plant species exhibit a variety of distinct sexual morphs, the two most common cases being the co-occurrence of females and males (dioecy) or the co-occurrence of hermaphrodites and females (gynodioecy). In this study, we compared DNA sequence variability of the three genomes (nuclear, mitochondrial and chloroplastic) of a gynodioecious species, Silene nutans, with that of a closely related dioecious species, Silene otites. In the light of theoretical models, we expect cytoplasmic diversity to differ between the two species due to the selective dynamics that acts on cytoplasmic genomes in gynodioecious species: under an epidemic scenario, the gynodioecious species is expected to exhibit lower cytoplasmic diversity than the dioecious species, while the opposite is expected in the case of balancing selection maintaining sterility cytoplasms in the gynodioecious species. We found no difference between the species for nuclear gene diversity, but, for the cytoplasmic loci, the gynodioecious S. nutans had more haplotypes, and higher nucleotide diversity, than the dioecious relative, S. otites, even though the latter has a relatively high rate of mitochondrial synonymous substitutions, and therefore presumably a higher mutation rate. Therefore, as the mitochondrial mutation rate cannot account for the higher cytoplasmic diversity found in S. nutans, our findings support the hypothesis that gynodioecy in S. nutans has been maintained by balancing selection rather than by epidemic-like dynamics.  相似文献   

16.

Background and Aims

Stinging nettle (Urtica dioica) is a herbaceous, dioecious perennial that is widely distributed around the world, reproduces both sexually and asexually, and is characterized by rapid growth. This work was aimed at evaluating the effects of plant maturity, shoot reproduction and sex on the growth of leaves and shoots.

Methods

Growth rates of apical shoots, together with foliar levels of phytohormones (cytokinins, auxins, absicisic acid, jasmonic acid and salicylic acid) and other indicators of leaf physiology (water contents, photosynthetic pigments, α-tocopherol and Fv/Fm ratios) were measured in juvenile and mature plants, with a distinction made between reproductive and non-reproductive shoots in both males and females. Vegetative growth rates were not only evaluated in field-grown plants, but also in cuttings obtained from these plants. All measurements were performed during an active vegetative growth phase in autumn, a few months after mature plants reproduced during spring and summer.

Key Results

Vegetative growth rates in mature plants were drastically reduced compared with juvenile ones (48 % and 78 % for number of leaves and leaf biomass produced per day, respectively), which was associated with a loss of photosynthetic pigments (up to 24 % and 48 % for chlorophylls and carotenoids, respectively) and increases of α-tocopherol (up to 2·7-fold), while endogenous levels of phytohormones did not differ between mature and juvenile plants. Reductions in vegetative growth were particularly evident in reproductive shoots of mature plants, and occurred similarly in both males and females.

Conclusions

It is concluded that (a) plant maturity reduces vegetative growth in U. dioica, (b) effects of plant maturity are evident both in reproductive and non-reproductive shoots, but particularly in the former, and (c) these changes occur similarly in both male and female plants.  相似文献   

17.
Novel adaptations often cause pleiotropic reductions in fitness. Under optimal conditions individual organisms may be able to compensate for, or reduce, these fitness costs. Declining environmental quality may therefore lead to larger costs. We investigated whether reduced plant quality would increase the fitness costs associated with resistance to Bacillus thuringiensis in two populations of the diamondback moth Plutella xylostella. We also measured the rate of decline in resistance on two host-plant (Brassica) species for one insect population (Karak). Population X plant species interactions determined the fitness costs in this study. Poor plant quality increased the fitness costs in terms of development time for both populations. However, fitness costs seen in larval survival did not always increase as plant quality declined. Both the fitness and the stability experiment indicated that fitness costs were higher on the most suitable plant for one population. Theoretically, if the fitness cost of a mutation interacts additively with environmental factors, the relative fitness of resistant insects will decrease with environmental quality. However, multiplicative costs do not necessarily increase with declining quality and may be harder to detect when fitness parameters are more subject to variation in poorer environments.  相似文献   

18.
Widén B  Widén M 《Oecologia》1990,83(2):191-196
Summary Pollen movement is often restricted in natural populations, and insufficient pollination is a potential constraint on sexual reproduction in outcrossing species. Seed-set should decrease with increased distance from the pollen source in outcrossing plants. This prediction was tested using females of the clonal, gynodioecious herb Glechoma hederacea in three natural populations. In controlled pollinations, both hermaphrodites and females had similar high percentages of fruit-set and seed-set. In a natural population where a female clone was isolated from the nearest hermaphroditic clone by c. 100 m, fruit-set was low (1%). In another population where hemaphroditic clones were rare and female clones had a patchy distribution, fruit-and seed-set in females were pollen-limited and decreased with increased distance from the nearest pollen source. The estimated mean pollen dispersal distance was 5.9 m when calculated on fruit-set and 5.3 m when calculated on seed-set. The most frequent pollinators were bumblebees. The mean and median distances moved by pollinators between ramets were 0.13 m and 0.05 m. In a third population where female clones were isolated from the nearest hermaphrodites by more than 200 m, fruit-set was 0%. After introduction of 16 hermaphroditic ramets in the center of the female clone, fruit-set varied between 0% and 100% in individual female ramets. Fruit-set decreased with increased distance from the pollen source. The mean and median pollen movement distances were 1.06 m and 0.54 m.  相似文献   

19.

Background and Aims

Plants surrounded by individuals of other co-flowering species may suffer a reproductive cost from interspecific pollen transfer (IPT). However, differences in floral architecture may reduce or eliminate IPT.

Methods

A study was made of Pedicularis densispica (lousewort) and its common co-flowering species, Astragalus pastorius, to compare reproductive and pollination success of lousewort plants from pure and mixed patches. Floral architecture and pollinator behaviour on flowers of the two plants were compared along with the composition of stigmatic pollen load of the louseworts. The extent of pollen limitation of plants from pure and mixed patches was also explored through supplemental pollination with self- and outcross pollen (PLs and PLx).

Key Results

Mixed patches attracted many more nectar-searching individuals of Bombus richardsi. These bumble-bees moved frequently between flowers of the two species. However, they pollinated P. densispica with their dorsum and A. pastorius with their abdomen. This difference in handling almost completely eliminated IPT. Lousewort plants from mixed patches yielded more seeds, and seeds of higher mass and germinability, than those from pure patches. Moreover, louseworts from mixed patches had lower PLs and PLx compared with those from pure patches.

Conclusions

Differences in floral architecture induced differences in pollinator behaviour that minimized IPT, such that co-flowering plants significantly enhanced quantity and quality of pollinator visits for the lousewort plants in patchy habitat. These findings add to our understanding of the mechanisms of pollination facilitation.  相似文献   

20.
In gynodioecious plant species, females are expected to have more resources available for maturing seeds because pistillate flowers are smaller, do not produce pollen, and are thus less costly that perfect flowers. The potential female advantage arising from more abundant resources is, however, likely to vary depending on whether seed production is limited by resource or pollen availability. Here we experimentally investigated the influence of pollen and resource limitation on female advantage in a gynodioecious species using two levels of pollination. Total seed production of females was always greater than that of hermaphrodites: females produced more flowers and more fruits that contained similar numbers of seeds of similar mass. Under low pollination, female and hermaphrodite plants allocated resources to increased flower production rather than to increased seed size or quality. We did not detect any influence of pollen or resource limitation on female advantage, which remained similar under low (= abundant resources) and full pollination. Outcrossed fruits performed better than selfed fruits when the same plant received both selfed and outcrossed pollen on different flowers. These differences were not greater under high pollination, possibly because resources available for each fruit did not differ between our pollen intensity treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号