共查询到20条相似文献,搜索用时 0 毫秒
1.
G Baier D Baumann JM Siebert A Musyanovych V Mailänder K Landfester 《Biomacromolecules》2012,13(9):2704-2715
Synthesizing nanocarriers with stealth properties and delivering a "payload" to the particular organ remains a big challenge but is the prime prerequisite for any in vivo application. As a nontoxic alternative to the modification by poly(ethylene glycol) PEG, we describe the synthesis of cross-linked hydroxyethyl starch (HES, M(w) 200,000 g/mol) nanocapsules with a size range of 170-300 nm, which do not show nonspecific uptake into cells. The specific uptake was shown by coupling a folic acid conjugate as a model targeting agent onto the surface of the nanocapsules, because folic acid has a high affinity to a variety of human carcinoma cell lines which overexpress the folate receptor on the cell surface. The covalent binding of the folic acid conjugate onto HES capsules was confirmed by FTIR and NMR spectroscopy. The coupling efficiency was determined using fluorescence spectroscopy. The specific cellular uptake of the HES nanocapsules after folic acid coupling into the folate-receptor presenting cells was studied by confocal laser scanning microscopy (CLSM) and flow cytometry. 相似文献
2.
The mechanisms by which tissue injury after acute myocardial infarction occurs have not been fully elucidated, but considerable evidence suggests that activation of complement plays an important role in the pathophysiology. Reperfusion of the ischemic myocardium is strictly necessary to rescue the exposed tissue from eventual death. However, reversion of the blood supply is also associated with reperfusion injury contributing to tissue injury. Activation of the complement system has indisputable beneficial effects in the immune defense and in the clearance of damaged tissue and apoptotic cells, but excessive activation of the system may lead to uncontrolled tissue damage. This review focuses on the role of complement activation, with focus on the lectin pathway, endothelial dysfunction and cardiovascular diseases, including ischemic heart disease and diabetic angiopathy. Finally, potential therapeutic strategies targeting the complement system are discussed. 相似文献
3.
Human C-reactive protein (CRP) is known to activate the C system upon reaction with phosphocholine-containing or polycation-containing ligands. We found that, even in the absence of these ligands, CRP caused C activation in mildly acidic conditions. The optimum pH for the activation was 6.3, which is within a physiologic range normally found at an inflammatory locus. In this activation, C components C1 and C4 were extensively consumed, C2 and C3 were moderately consumed, and C5 was only slightly consumed. These results indicate that the activation is mediated via the classical pathway, but is restricted to the early stage of the C cascade. As with the plasma contact system, the reaction proceeded in glass tubes but not in polypropylene tubes. However, even in polypropylene tubes, the reaction proceeded after the supplement of kaolin particles to the system. Probably the C activation induced by CRP at a mildly acidic pH required negatively charged surfaces. Analyses of circular dichroism and fluorescence spectra indicate that CRP undergoes a pH-dependent conformational change, thus affecting the reactivity of CRP with the C system. 相似文献
4.
Water-soluble organic nanocapsules were prepared from bottlebrush copolymers with triblock terpolymer side chains composed of a degradable inner block (polylactide), a cross-linkable middle block (poly(4-butenylstyrene)), and a functional outer block (poly(styrene-co-maleic anhydride)). Bottlebrush copolymers are macromolecules with a long linear backbone and shorter polymeric side chains densely grafted onto the backbone. Hollow cylindrical nanoparticles were prepared by peripheral cross-linking of the bottlebrush copolymers and subsequent selective removal of the core. Reactive anhydride groups of the outer functional layer allowed for the preparation of nanocapsules with tunable surface characteristics. Cellular uptake of negatively charged organic nanocapsules showed strong surface chemistry dependence. The presence of hydrophobic groups on the nanocapsule surface was necessary for their nonspecific association with the cell membrane and subsequent internalization by endocytosis. The length of surface grafted oligoethylene glycol chains also had a dramatic influence on the intracellular accumulation of nanocapsules. Macropinocytosis was shown to be the predominant pathway for the cellular uptake of organic nanocapsules. 相似文献
5.
6.
Ghosh M McAuliffe B Subramani J Basu S Shapiro LH 《Journal of immunology (Baltimore, Md. : 1950)》2012,188(11):5489-5499
Dendritic cell (DC) Ag cross-presentation is generally associated with immune responses to tumors and viral Ags, and enhancement of this process is a focus of tumor vaccine design. In this study, we found that the myeloid cell surface peptidase CD13 is highly and specifically expressed on the subset of DCs responsible for cross-presentation, the CD8(+) murine splenic DCs. In vivo studies indicated that lack of CD13 significantly enhanced T cell responses to soluble OVA Ag, although development, maturation, and Ag processing and presentation of DCs are normal in CD13KO mice. In vitro studies showed that CD13 regulates receptor-mediated, dynamin-dependent endocytosis of Ags such as OVA and transferrin but not fluid-phase or phagocytic Ag uptake. CD13 and Ag are cointernalized in DCs, but CD13 did not coimmunoprecipitate with Ag receptors, suggesting that CD13 does not control internalization of specific receptors but regulates endocytosis at a more universal level. Mechanistically, we found that phosphorylation of the endocytic regulators p38MAPK and Akt was dysregulated in CD13KO DCs, and blocking of these kinases perturbed CD13-dependent endocytic uptake. Therefore, CD13 is a novel endocytic regulator that may be exploited to enhance Ag uptake and T cell activation to improve the efficacy of tumor-targeted vaccines. 相似文献
7.
Hwang SL Yang BK Lee JY Kim JH Kim BD Kim BH Suh KH Kim DY Kim DY Kim MS Song H Park BS Huh TL 《Biochemical and biophysical research communications》2008,371(2):289-293
AMP-activated protein kinase (AMPK) is an energy-sensing enzyme that is implicated as a key factor in controlling whole body homeostasis, including fatty acid oxidation and glucose uptake. We report that a synthetic structural isomer of dihydrocapsiate, isodihydrocapsiate (8-methylnonanoic acid 3-hydroxy-4-methoxy benzyl ester) improves type 2 diabetes by activating AMPK through the LKB1 pathway. In L6 myotube cells, phosphorylation of AMPK and acetyl-CoA carboxylase (ACC) and glucose uptake were significantly increased, whereas these effects were attenuated by an AMPK inhibitor, compound C. In addition, increased phosphorylation of AMPK and ACC by isodihydrocapsiate was significantly reduced by radicicol, an LKB1 destabilizer, suggesting that increased glucose uptake in L6 cells with isodihydrocapsiate treatment is predominantly accomplished by a LKB1-mediated AMPK activation pathway. Oral administration of isodihydrocapsiate to diabetic (db/db) mice reduced blood glucose levels by 40% after a 4-week treatment period. Our results support the development of isodihydrocapsiate as a potential therapeutic agent to target AMPK in type 2 diabetes. 相似文献
8.
Early downstream responses of T lymphocytes following T cell antigen receptor (TCR) activation are mediated by protein complexes that assemble in domains of the plasma membrane. Using stable isotope labeling with amino acids in cell culture and mass spectrometry, we quantitatively related the proteome of αCD3 immunoisolated native TCR signaling plasma membrane domains to that of control plasma membrane fragments not engaged in TCR signaling. Proteins were sorted according to their relative enrichment in isolated TCR signaling plasma membrane domains, identifying a complex protein network that is anchored in the vicinity of activated TCR. These networks harbor widespread mediators of plasma membrane-proximal T cell activities, including propagation, balancing, and attenuation of TCR signaling, immune synapse formation, as well as cytoskeletal arrangements relative to TCR activation clusters. These results highlight the unique potential of systematic characterizations of plasma membrane-proximal T cell activation proteome in the context of its native lipid bilayer platform. 相似文献
9.
Actin-bundling protein L-plastin regulates T cell activation 总被引:1,自引:0,他引:1
Wang C Morley SC Donermeyer D Peng I Lee WP Devoss J Danilenko DM Lin Z Zhang J Zhou J Allen PM Brown EJ 《Journal of immunology (Baltimore, Md. : 1950)》2010,185(12):7487-7497
Engagement of TCRs induces actin rearrangements, which are critical for T cell activation. T cell responses require new actin polymerization, but the significance of higher-order actin structures, such as microfilament bundles, is unknown. To determine the role of the actin-bundling protein leukocyte-plastin (L-plastin; LPL) in this process, T cells from LPL(-/-) mice were studied. LPL(-/-) T cells were markedly defective in TCR-mediated cytokine production and proliferation. LPL(-/-) T cells also spread inefficiently on surfaces with immobilized TCR ligands and formed smaller immunological synapses with APCs, likely due to defective formation of lamellipodia. LPL(-/-) mice showed delayed rejection of skin allografts after release from immunosuppression. Moreover, LPL(-/-) mice developed much less severe neurologic symptoms in experimental autoimmune encephalomyelitis, which correlated with impaired T cell responses to Ag, manifested by reduced proliferation and production of IFN-γ and IL-17. Thus, LPL-dependent actin bundling facilitates the formation of lamellipodia and normal immunological synapses and thereby enables T cell activation. 相似文献
10.
Benoit ME Clarke EV Morgado P Fraser DA Tenner AJ 《Journal of immunology (Baltimore, Md. : 1950)》2012,188(11):5682-5693
Deficiency in C1q, the recognition component of the classical complement cascade and a pattern recognition receptor involved in apoptotic cell clearance, leads to lupus-like autoimmune diseases characterized by auto-antibodies to self proteins and aberrant innate immune cell activation likely due to impaired clearance of apoptotic cells. In this study, we developed an autologous system using primary human lymphocytes and human monocyte-derived macrophages (HMDMs) to characterize the effect of C1q on macrophage gene expression profiles during the uptake of apoptotic cells. C1q bound to autologous apoptotic lymphocytes modulated expression of genes associated with JAK/STAT signaling, chemotaxis, immunoregulation, and NLRP3 inflammasome activation in LPS-stimulated HMDMs. Specifically, C1q sequentially induced type I IFNs, IL-27, and IL-10 in LPS-stimulated HMDMs and IL-27 in HMDMs when incubated with apoptotic lymphocyte conditioned media. Coincubation with C1q tails prevented the induction of type I IFNs and IL-27 in a dose-dependent manner, and neutralization of type I IFNs partially prevented IL-27 induction by C1q. Finally, C1q decreased procaspase-1 cleavage and caspase-1-dependent cleavage of IL-1β suggesting a potent inhibitory effect of C1q on inflammasome activation. These results identify specific molecular pathways induced by C1q to suppress macrophage inflammation and provide potential therapeutic targets to control macrophage polarization and thus inflammation and autoimmunity. 相似文献
11.
《The Journal of nutritional biochemistry》2014,25(7):741-749
PUFAs (polyunsaturated fatty acids) can modify immune responses, so they may have potential therapeutic effects in inflammatory disorders. We previously demonstrated that the cis-9, trans-11 isomer of the PUFA conjugated linoleic acid (CLA) can modulate dendritic cell (DC) cytokine production. Since DCs play a central role in initiating inflammation by directing T helper (Th) cell differentiation, here we examined the effects of CLA on DC maturation and migration and the subsequent generation of Th cell responses. We examined the effect of CLA in vitro on the function of lipopolysaccharide (LPS)-activated bone marrow-derived DCs and ex vivo using cells from mice with high levels of CLA in their diet. We report that CLA inhibits DC migration and modulates TLR-induced production of key cytokines involved in Th cell differentiation both in vitro and in vivo. These changes were accompanied by a significant decrease in expression of MHCII, CD80 and CD86 on the DC surface. Exposure of DCs to CLA suppressed their ability to promote differentiation of naïve T cells into Th1 and/or Th17 cells in vitro and following their adoptive transfer in vivo. Furthermore, in a murine model of endotoxic shock, treatment with CLA suppressed LPS-induced induction of circulating IFN-γ, IL-12p40 and IL-1β. This is the first study to demonstrate that exposure of antigen-presenting cells to CLA can modulate the subsequent Th cell response, and the findings may explain some of the beneficial effects of c9, t11-CLA in inflammatory diseases mediated by Th1 and Th17 cells. 相似文献
12.
X F Li G Thinakaran S S Sisodia F S Yu 《The Journal of biological chemistry》1999,274(38):27249-27256
Previous studies have established that in response to wounding, the expression of amyloid precursor-like protein 2 (APLP2) in the basal cells of migrating corneal epithelium is greatly up-regulated. To further our understanding of the functional significance of APLP2 in wound healing, we have measured the migratory response of transfected Chinese hamster ovary (CHO) cells expressing APLP2 isoforms to a variety of extracellular matrix components including laminin, collagen types I, IV, and VII, fibronectin, and heparan sulfate proteoglycans (HSPGs). CHO cells overexpressing either of two APLP2 variants, differing in chondroitin sulfate (CS) attachment, exhibit a marked increase in chemotaxis toward type IV collagen and fibronectin but not to laminin, collagen types I and VII, and HSPGs. Cells overexpressing APLP2-751 (CS-modified) exhibited a greater migratory response to fibronectin and type IV collagen than their non-CS-attached counterparts (APLP2-763), suggesting that CS modification enhanced APLP2 effects on cell migration. Moreover, in the presence of chondroitin sulfate, transfectants overexpressing APLP2-751 failed to exhibit this enhanced migration toward fibronectin. The APLP2-ECM interactions were also explored by solid phase adhesion assays. While overexpression of APLP2 isoforms moderately enhanced CHO adhesion to laminin, collagen types I and VII, and HSPGs lines, especially those overexpressing APLP2-751, exhibited greatly increased adhesion to type IV collagen and fibronectin. These observations suggest that APLP2 contributes to re-epithelialization during wound healing by supporting epithelial cell adhesion to fibronectin and collagen IV, thus influencing their capacity to migrate over the wound bed. Furthermore, APLP2 interactions with fibronectin and collagen IV appear to be potentiated by the addition of a CS chain to the core proteins. 相似文献
13.
IgE-dependent mast cell activation potentiates airway responses in murine asthma models 总被引:7,自引:0,他引:7
Mayr SI Zuberi RI Zhang M de Sousa-Hitzler J Ngo K Kuwabara Y Yu L Fung-Leung WP Liu FT 《Journal of immunology (Baltimore, Md. : 1950)》2002,169(4):2061-2068
We have studied murine models of asthma using FcepsilonRIalpha-chain-deficient (FcepsilonRIalpha(-/-)) mice to investigate the role of IgE-dependent mast cell activation in these models. When mice were either 1) immunized once with OVA in alum i.p. and then challenged with OVA intranasally, or 2) repeatedly immunized with OVA in the absence of adjuvant and subsequently challenged with nebulized OVA, FcepsilonRalpha(-/-) mice had significantly fewer eosinophils and lower IL-4 levels in their bronchoalveolar lavage fluid compared with wild-type mice. When mice were given anti-IL-5 antibody before OVA challenge in protocol 1, eosinophilic infiltration into the airways was significantly suppressed in both genotypes, but only FcepsilonRIalpha(-/-) mice showed significantly reduced airway hyperresponsiveness (AHR). In addition, when mice immunized and challenged with OVA also received a late OVA provocation at a higher concentration and were then exposed to methacholine, only wild-type mice developed a substantial increase in AHR. Since FcepsilonRI is expressed mainly on mast cells in mouse airways, we conclude that IgE-dependent activation of this cell type plays an important role in the development of allergic airway inflammation and AHR in mice. The models used may be of value for testing inhibitors of IgE or mast cells for development of therapeutic agents for human asthma. 相似文献
14.
Ginette S Hoare Emma J Birks Christopher Bowles Nandor Marczin Magdi H Yacoub 《Journal of applied physiology》2006,101(5):1466-1473
BACKGROUND: vascular endothelial cell activation and dysfunction are observed in patients with severe heart failure and may contribute to systemic manifestations of this syndrome. It remains unknown whether inflammatory activation of these cells occurs in these patients because of increased circulating proinflammatory mediators. Aim: to determine whether the serum from patients with heart failure possesses a net proinflammatory bioactivity to active proinflammatory pathways in cultured endothelial cells. METHODS: serum was obtained from stable patients with end-stage heart failure undergoing elective cardiac transplantation (Tx) and severely decompensated patients with heart failure requiring emergency left ventricular assist device (LVAD) implantation. Net proinflammatory bioactivity of serum was investigated by monitoring IkappaBalpha degradation and E-selectin expression in cultured human pulmonary artery endothelial cells (HPAEC) following incubation with serum samples. Serum cytokine concentrations were measured by ELISA and neutralizing antibodies were used to determine the role of specific factors in the observed bioactivity. RESULT: serum from both patient groups induced HPAEC IkappaBalpha degradation. Low basal HPAEC E-selectin expression significantly increased following treatment with Tx but not LVAD serum. Serum tumor necrosis factor-alpha (TNF-alpha) and IL-10 concentrations were higher in patients with LVAD than those with Tx, and soluble TNF-alpha receptor expression was high in both groups. Neither TNF-alpha nor IL-10 blocking experiments altered either bioassay result. CONCLUSION: activation of a specific profile of pro- and anti-inflammatory mediators is associated with heart failure resulting in HPAEC nuclear factor (NF)-kappaB activation. However, E-selectin expression is further regulated by unidentified factors. TNF-alpha is upregulated but appears to play no part in NFkappaB activation in these patients. These findings could have important therapeutic implications. 相似文献
15.
Rubtsov AV Swanson CL Troy S Strauch P Pelanda R Torres RM 《Journal of immunology (Baltimore, Md. : 1950)》2008,180(6):3882-3888
Although IgM serves as a first barrier to Ag spreading, the cellular and molecular mechanisms following B lymphocyte activation that lead to IgM secretion are not fully understood. By virtue of their anatomical location, marginal zone (MZ) B cells rapidly generate Ag-specific IgM in response to blood-borne pathogens and play an important role in the protection against these potentially harmful Ags. In this study, we have explored the contribution of TLR agonists to MZ B cell activation and mobilization as well as their ability to promote primary IgM responses in a mouse model. We demonstrate that diverse TLR agonists stimulate MZ B cells to become activated and leave the MZ through pathways that are differentially dependent on MyD88 and IFN-alphabeta receptor signaling. Furthermore, in vivo stimulation of MZ B cells with TLR agonists led to a reduction in the expression of the sphingosine-1-phosphate (S1P) receptors expressed by MZ B cells and/or increased CD69 cell surface levels. Importantly, as adjuvants for a T cell-dependent protein Ag, TLR agonists were found to accelerate the kinetics but not magnitude of the Ag-specific IgM response. Together, these data demonstrate that in vivo TLR agonist treatment enhances the early production of Ag-specific IgM and activates MZ B cells to promote their relocation. 相似文献
16.
Signaling lymphocytic activation molecule-associated protein controls NKT cell functions 总被引:5,自引:0,他引:5
Chung B Aoukaty A Dutz J Terhorst C Tan R 《Journal of immunology (Baltimore, Md. : 1950)》2005,174(6):3153-3157
X-linked lymphoproliferative disease (XLP) is a fatal immunological disorder that typically manifests following EBV infection. XLP patients exhibit a number of immune defects including abnormal T, B, and NK lymphocyte function. These defects have been attributed to mutations of Src homology 2 domain-containing gene 1A (SH2D1A), the gene encoding signaling lymphocytic activation molecule-associated protein (SAP), an intracellular adaptor molecule expressed in lymphocytes. We have observed that SAP knockout (SAPKO) mice and humans with XLP have a complete lack of CD1d-restricted NKT cells. As expected, SAPKO mice injected with the NKT cell agonist, alpha-galactosylceramide failed to generate NKT cell IFN-gamma or IL-4. Furthermore, in contrast to wild-type littermates, SAPKO mice coinjected with OVA and alpha-galactosylceramide failed to mount OVA-specific CTL responses. These data suggest that an absence of NKT cells may underlie part of the immune dysregulation seen in SAPKO mice and in XLP patients. 相似文献
17.
T cell activation responses are differentially regulated during clinorotation and in spaceflight. 总被引:6,自引:0,他引:6
Studies of T lymphocyte activation with mitogenic lectins during spaceflight have shown a dramatic inhibition of activation as measured by DNA synthesis at 72 h, but the mechanism of this inhibition is unknown. We have investigated the progression of cellular events during the first 24 h of activation using both spaceflight microgravity culture and a ground-based model system that relies on the low shear culture environment of a rotating clinostat (clinorotation). Stimulation of human peripheral blood mononuclear cells (PBMCs) with soluble anti-CD3 (Leu4) in clinorotation and in microgravity culture shows a dramatic reduction in surface expression of the receptor for IL-2 (CD25) and CD69. An absence of bulk RNA synthesis in clinorotation indicates that stimulation with soluble Leu4 does not induce transition of T cells from G0 to the G1 stage of the cell cycle. However, internalization of the TCR by T cells and normal levels of IL-1 synthesis by monocytes indicate that intercellular interactions that are required for activation occur during clinorotation. Complementation of TCR-mediated signaling by phorbol ester restores the ability of PBMCs to express CD25 in clinorotation, indicating that a PKC-associated pathway may be compromised under these conditions. Bypassing the TCR by direct activation of intracellular pathways with a combination of phorbol ester and calcium ionophore in clinorotation resulted in full expression of CD25; however, only partial expression of CD25 occurred in microgravity culture. Though stimulation of purified T cells with Bead-Leu4 in microgravity culture resulted in the engagement and internalization of the TCR, the cells still failed to express CD25. When T cells were stimulated with Bead-Leu4 in microgravity culture, they were able to partially express CD69, a receptor that is constitutively stored in intracellular pools and can be expressed in the absence of new gene expression. Our results suggest that the inhibition of T cell proliferative response in microgravity culture is a result of alterations in signaling events within the first few hours of activation, which are required for the expression of important regulatory molecules. 相似文献
18.
Complement activation and antibody binding by pneumolysin via a region of the toxin homologous to a human acute-phase protein 总被引:11,自引:0,他引:11
T. J. Mitchell P. W. Andrew F. K. Saunders A. N. Smith G. J. Boulnois 《Molecular microbiology》1991,5(8):1883-1888
Pneumolysin, a membrane-damaging toxin, is known to activate the classical complement pathway. We have shown that 1 microgram ml-1 of pneumolysin can activate complement, which is a much lower level than observed previously. We have identified two distinct regions of pneumolysin which show homology with a contiguous sequence within acute-phase proteins, including human C-reactive protein (CRP). Site-directed mutagenesis of the pneumolysin gene was used to change residues common to pneumolysin and CRP. Some of the modified toxins had a reduced ability both to activate complement and bind antibody. We suggest that the ability of pneumolysin to activate complement is related to its ability to bind the Fc portion of immunoglobulin G. 相似文献
19.
Peng H Yang LT Li J Lu ZQ Wang LY Koup RA Bailer RT Wu CY 《Microbes and infection / Institut Pasteur》2006,8(9-10):2424-2431
E protein is a membrane component of severe acute respiratory syndrome coronavirus (SARS-CoV). Disruption of E protein may reduce viral infectivity. Thus, the SARS-CoV E protein is considered a potential target for the development of antiviral drugs. However, the cellular immune responses to E protein remain unclear in humans. In this study, we found that peripheral blood mononuclear cells (PBMCs) from fully recovered SARS individuals rapidly produced IFN-gamma and IL-2 following stimulation with a pool of 9 peptides overlapping the entire E protein sequence. Analysis of the immune responses by flow cytometry showed that both CD4+ and CD8+T cells were involved in the SARS-CoV E-specific immune responses after stimulation with SARS-CoV E peptides. Moreover, the majority of IFN-gamma+CD4+T cells were central memory cells expressing CD45RO+CCR7+CD62L-; whereas IFN-gamma+CD8+ memory T cells were mostly effector memory cells expressing CD45RO-CCR7-CD62L-. The results of T-cell responses to 9 individual peptides indicated that the E protein contained at least two major T cell epitopes (E2 amino acid [aa] 9-26 and E5-6: aa 33-57) which were important in eliciting cellular immune response to SARS-CoV E protein in humans. 相似文献
20.
Kirchhof MG Chau LA Lemke CD Vardhana S Darlington PJ Márquez ME Taylor R Rizkalla K Blanca I Dustin ML Madrenas J 《Journal of immunology (Baltimore, Md. : 1950)》2008,181(3):1927-1936
T cell activation through the Ag receptor (TCR) requires sustained signaling from signalosomes within lipid raft microdomains in the plasma membrane. In a proteomic analysis of lipid rafts from human T cells, we identified stomatin-like protein (SLP)-2 as a candidate molecule involved in T cell activation through the Ag receptor. In this study, we show that SLP-2 expression in human primary lymphocytes is up-regulated following in vivo and ex vivo activation. In activated T cells, SLP-2 interacts with components of TCR signalosomes and with polymerized actin. More importantly, up-regulation of SLP-2 expression in human T cell lines and primary peripheral blood T cells increases effector responses, whereas down-regulation of SLP-2 expression correlates with loss of sustained TCR signaling and decreased T cell activation. Our data suggest that SLP-2 is an important player in T cell activation by ensuring sustained TCR signaling, which is required for full effector T cell differentiation, and point to SLP-2 as a potential target for immunomodulation. 相似文献