首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Filamentous actinomycetes are commercially widely used as producers of natural products. However, the mycelial lifestyle of actinomycetes has been a major bottleneck in their commercialization, and screening is difficult due to their poor growth on microtiter plates. We previously demonstrated that the enhanced expression of the cell division activator protein SsgA results in the fragmented growth of streptomycetes, with enhanced growth rates and improved product formation. We here describe a novel and efficient method to create, maintain, and screen mutant libraries in streptomycetes and the application of this method for the functional analysis of Streptomyces coelicolor ssgA. The variants were amplified directly from deep-frozen biomass suspensions. Around 800 ssgA variants, including single-amino-acid-substitution mutants corresponding to more than half of all SsgA residues, were analyzed for their abilities to restore sporulation to an ssgA mutant. The essential residues were clustered in three main sections, and hardly any were in the carboxy-terminal third of the protein. The majority of the crucial residues were conserved among all SsgA-like proteins (SALPs). However, the essential residues L29, D58, and S89 were conserved only in SsgA orthologues and not in other SALPs, suggesting an SsgA-specific function.  相似文献   

2.
3.
Several unique protein families have been identified that play a role in the control of developmental cell division in streptomycetes. The SsgA-like proteins or SALPs, of which streptomycetes typically have at least five paralogues, control specific steps of sporulation-specific cell division in streptomycetes, affecting cell wall-related events such as septum localization and synthesis, thickening of the spore wall and autolytic spore separation. The expression level of SsgA, the best studied SALP, has a rather dramatic effect on septation and on hyphal morphology, which is not only of relevance for our understanding of (developmental) cell division but has also been successfully applied in industrial fermentation, to improve growth and production of filamentous actinomycetes. Recent observations suggest that SsgB most likely is the archetypal SALP, with only SsgB orthologues occurring in all morphologically complex actinomycetes. Here we review 10 years of research on the SsgA-like proteins in actinomycetes and discuss the most interesting regulatory, functional, phylogenetic and applied aspects of this relatively unknown protein family.  相似文献   

4.
During developmental cell division in sporulation-committed aerial hyphae of streptomycetes, up to a hundred septa are simultaneously produced, in close harmony with synchromous chromosome condensation and segregation. Several unique protein families are involved in the control of this process in actinomycetes, including that of the SsgA-like proteins (SALPs). Mutants for each of the individual SALP genes were obtained, and high-resolution and fluorescence imaging revealed that each plays an important and highly specific role in the control of the sporulation process, and their function relates to the build-up and degradation of septal and spore-wall peptidoglycan. While SsgA and SsgB are essential for sporulation-specific cell division in Streptomyces coelicolor, SsgC-G are responsible for correct DNA segregation/condensation (SsgC), spore wall synthesis (SsgD), autolytic spore separation (SsgE, SsgF) or exact septum localization (SsgG). Our experiments paint a picture of a novel protein family that acts through timing and localization of the activity of penicillin-binding proteins and autolysins, thus controlling important steps during the initiation and the completion of sporulation in actinomycetes.  相似文献   

5.
Filamentous actinomycetes are commercially widely used as producers of natural products (in particular antibiotics) and of industrial enzymes. However, the mycelial lifestyle of actinomycetes, resulting in highly viscous broths and unfavorable pellet formation, has been a major bottleneck in their commercialization. Here we describe the successful morphological engineering of industrially important streptomycetes through controlled expression of the morphogene ssgA. This led to improved growth of many industrial and reference streptomycetes, with fragmentation of the mycelial clumps resulting in significantly enhanced growth rates in batch fermentations of Streptomyces coelicolor and Streptomyces lividans. Product formation was also stimulated, with a twofold increase in yield of enzyme production by S. lividans. We anticipate that the use of the presented methodology will make actinomycetes significantly more attractive as industrial and sustainable production hosts.  相似文献   

6.
7.
In the era when large whole genome bacterial datasets are generated routinely, rapid and accurate molecular systematics is becoming increasingly important. However, 16S ribosomal RNA sequencing does not always offer sufficient resolution to discriminate between closely related genera. The SsgA-like proteins are developmental regulatory proteins in sporulating actinomycetes, whereby SsgB actively recruits FtsZ during sporulation-specific cell division. Here, we present a novel method to classify actinomycetes, based on the extraordinary way the SsgA and SsgB proteins are conserved. The almost complete conservation of the SsgB amino acid (aa) sequence between members of the same genus and its high divergence between even closely related genera provides high-quality data for the classification of morphologically complex actinomycetes. Our analysis validates Kitasatospora as a sister genus to Streptomyces in the family Streptomycetaceae and suggests that Micromonospora, Salinispora and Verrucosispora may represent different clades of the same genus. It is also apparent that the aa sequence of SsgA is an accurate determinant for the ability of streptomycetes to produce submerged spores, dividing the phylogenetic tree of streptomycetes into liquid-culture sporulation and no liquid-culture sporulation branches. A new phylogenetic tree of industrially relevant actinomycetes is presented and compared with that based on 16S rRNA sequences.  相似文献   

8.
SsgA-like proteins (SALPs) are a family of homologous cell division-related proteins that occur exclusively in morphologically complex actinomycetes. We show that SsgB, a subfamily of SALPs, is the archetypal SALP that is functionally conserved in all sporulating actinomycetes. Sporulation-specific cell division of Streptomyces coelicolor ssgB mutants is restored by introduction of distant ssgB orthologues from other actinomycetes. Interestingly, the number of septa (and spores) of the complemented null mutants is dictated by the specific ssgB orthologue that is expressed. The crystal structure of the SsgB from Thermobifida fusca was determined at 2.6 Å resolution and represents the first structure for this family. The structure revealed similarities to a class of eukaryotic “whirly” single-stranded DNA/RNA-binding proteins. However, the electro-negative surface of the SALPs suggests that neither SsgB nor any of the other SALPs are likely to interact with nucleotide substrates. Instead, we show that a conserved hydrophobic surface is likely to be important for SALP function and suggest that proteins are the likely binding partners.The mechanisms governing the correct timing and localization of cell division is one of the most studied topics in cell biology. In unicellular bacteria like Escherichia coli, cell division occurs at the mid-cell position, away from the chromosomes (13). The key step in this process is the appropriate timing and localization of cell division protein FtsZ to the future septum site, followed by polymerization to the Z-ring and sequential recruitment of the divisome components (1, 4). One of the major advances in our understanding of the cell division process and, in particular, of the function of FtsZ came from elucidation of the three-dimensional structure of FtsZ, which showed striking similarity to the eukaryotic protein tubulin, despite very low sequence similarity (5). Such prokaryotic ancestry was later also revealed for the cytoskeletal proteins MreB and Mbl, which belong to the actin family (6, 7), and underscored the notion of generally conserved principles in cytokinesis.Spore-forming Gram-positive Streptomyces bacteria are an important source of clinically useful antibiotics and anticancer agents (8). In these morphologically complex microorganisms, cell division is distinctly different from that in unicellular bacteria in several ways. For one, they are the only known organisms where FtsZ and MreB are both dispensable for growth (9, 10), which makes streptomycetes ideal for the study of cytokinesis. Streptomycetes have a complex life cycle that is mechanistically very similar to filamentous fungi, in producing a mycelium and propagating by sporulation (11, 12). During sporulation, the cell division machinery produces up to 100 septa simultaneously, spaced at around 1 μm, resulting in long chains of uniform and unigenomic spores (10, 13, 14). Besides the simultaneous production of multiple septa, cell division in mycelial actinomycetes also differs from that in other bacteria at the molecular level; actinomycetes lack orthologues of MinC and MinE for septum site localization (15, 16) as well as the nucleoid occlusion system Noc and Z-ring anchoring proteins, such as FtsA and ZipA (1, 6). Instead, several unique protein families have been identified that play a role in the control of cell division, including CrgA and the SsgA-like proteins (1719). However, molecular details of their mode of action are so far lacking.The SsgA (sporulation of Streptomyces griseus)-like proteins (SALPs)3 are small (around 130–140 residues), actinomycete-specific proteins, which control sporulation-related processes in streptomycetes (17, 20). Streptomyces coelicolor contains seven SALP paralogues (SsgA to SsgG). SsgA and SsgB are essential for sporulation of S. coelicolor (21, 22). SALPs are involved in the control of cell wall-related events, such as septum localization and synthesis, thickening of the spore wall, and autolytic spore separation (17, 20), and SsgA itself directly activates sporulation-specific cell division (22, 23). The morphological complexity of actinomycetes apparently correlates to the number of SALP homologues in each organism, with one paralogue in single spore-forming actinomycetes (e.g. Salinispora or Thermobifida) and up to seven in multispore formers (two in erythromycin producer Saccharopolyspora erythraea, 3–5 in Frankia, and 6–7 in Streptomyces) (17). Most SALPs can be assigned to three subfamilies (SsgA, SsgBG, and SsgDE) based on phylogenetic analysis (17). At present, there are no functional homologues for the SALPs, and structural information is lacking. To advance our understanding of how SALPs function at the molecular level and to provide a structural template for a unique protein family without obvious relatives in any other organism, we selected the single SALP homologue from the thermophilic soil bacterium Thermobifida fusca (a major degrader of plant cell walls used in waste remediation (24)) for detailed structural analysis by x-ray crystallography, as part of our structural genomics program.In this work, we show that SsgB is most likely the archetypical SALP that occurs in morphologically complex actinomycetes, with an evolutionarily conserved function in the control of development. The three-dimensional structure of the SsgB orthologue from T. fusca was determined and revealed significant structural similarity to a eukaryotic family of ssDNA/gRNA-binding proteins. However, the structure and experimental data both suggest that SALPs probably interact with protein ligands through a hydrophobic region on their surface.  相似文献   

9.
10.
11.
Filamentous actinomycetes are commercially widely used as producers of natural products (in particular antibiotics) and of industrial enzymes. However, the mycelial lifestyle of actinomycetes, resulting in highly viscous broths and unfavorable pellet formation, has been a major bottleneck in their commercialization. Here we describe the successful morphological engineering of industrially important streptomycetes through controlled expression of the morphogene ssgA. This led to improved growth of many industrial and reference streptomycetes, with fragmentation of the mycelial clumps resulting in significantly enhanced growth rates in batch fermentations of Streptomyces coelicolor and Streptomyces lividans. Product formation was also stimulated, with a twofold increase in yield of enzyme production by S. lividans. We anticipate that the use of the presented methodology will make actinomycetes significantly more attractive as industrial and sustainable production hosts.  相似文献   

12.
Six glycine residues of human muscle acylphosphatase (AcP) are evolutionarily conserved across the three domains of life. We have generated six variants of AcP, each having a glycine substituted by an alanine (G15A, G19A, G37A, G45A, G53A, and G69A). Three additional variants had Gly45 replaced by serine, glutamate, and arginine, respectively. The mutational variants do not, on average, have a lower conformational stability than other variants with substitutions of nonconserved residues. In addition, only the G15A variant is enzymatically inactive. However, all variants, with the exception of the G15A mutant, form amyloid aggregates more rapidly than the wild-type. Dynamic light-scattering experiments carried out under conditions close to physiological confirm that aggregate formation is generally more pronounced for the glycine-substituted variants. Apart from the glycine at position 15, all other conserved glycine residues in this protein could have been maintained during evolution because of their ability to inhibit aggregation.  相似文献   

13.
Nucleotide binding domains (NBDs) of the multidrug transporter of Candida albicans, CaCdr1p, possess unique divergent amino acids in their conserved motifs. For example, NBD1 (N-terminal-NBD) possesses conserved signature motifs, while the same motif is divergent in NBD2 (C-terminal-NBD). In this study, we have evaluated the contribution of these conserved and divergent signature motifs of CaCdr1p in ATP catalysis and drug transport. By employing site-directed mutagenesis, we made three categories of mutant variants. These included mutants where all the signature motif residues were replaced with either alanines or mutants with exchanged equipositional residues to mimic the conservancy and degeneracy in opposite domain. In addition, a set of mutants where signature motifs were swapped to have variants with either both the conserved or degenerated entire signature motif. We observed that conserved and equipositional residues of NBD1 and NBD2 and swapped signature motif mutants showed high susceptibility to all the tested drugs with simultaneous abrogation in ATPase and R6G efflux activities. However, some of the mutants displayed a selective increase in susceptibility to the drugs. Notably, none of the mutant variants and WT-CaCdr1p showed any difference in drug and nucleotide binding. Our mutational analyses show not only that certain conserved residues of NBD1 signature sequence (S304, G306, and E307) are important in ATP hydrolysis and R6G efflux but also that a few divergent residues (N1002 and E1004) of NBD2 signature motif have evolved to be functionally relevant and are not interchangeable. Taken together, our data suggest that the signature motifs of CaCdr1p, whether it is divergent or conserved, are nonexchangeable and are functionally critical for ATP hydrolysis.  相似文献   

14.
Distribution of actinomycetes in near-shore tropical marine sediments   总被引:15,自引:0,他引:15  
Actinomycetes were isolated from near-shore marine sediments collected at 15 island locations throughout the Bahamas. A total of 289 actinomycete colonies were observed, and all but 6 could be assigned to the suprageneric groups actinoplanetes and streptomycetes. A bimodal distribution in the actinomycete population in relation to depth was recorded, with the maximum numbers occurring in the shallow and deep sampling sites. This distribution can be accounted for by a rapid decrease in streptomycetes and an increase in actinoplanetes with increasing depth and does not conform to the theory that actinomycetes isolated from marine sources are of terrestrial origin. Sixty-three of the isolated actinomycetes were tested for the effects of seawater on growth. Streptomycete growth in nonsaline media was reduced by 39% compared with that in seawater. The actinoplanetes had a near obligate requirement of seawater for growth, and this is presented as evidence that actinomycetes can be physiologically active in the marine environment. Problems encountered with the enumeration of actinomycetes in marine sediments are also discussed.  相似文献   

15.
Actinomycetes were isolated from near-shore marine sediments collected at 15 island locations throughout the Bahamas. A total of 289 actinomycete colonies were observed, and all but 6 could be assigned to the suprageneric groups actinoplanetes and streptomycetes. A bimodal distribution in the actinomycete population in relation to depth was recorded, with the maximum numbers occurring in the shallow and deep sampling sites. This distribution can be accounted for by a rapid decrease in streptomycetes and an increase in actinoplanetes with increasing depth and does not conform to the theory that actinomycetes isolated from marine sources are of terrestrial origin. Sixty-three of the isolated actinomycetes were tested for the effects of seawater on growth. Streptomycete growth in nonsaline media was reduced by 39% compared with that in seawater. The actinoplanetes had a near obligate requirement of seawater for growth, and this is presented as evidence that actinomycetes can be physiologically active in the marine environment. Problems encountered with the enumeration of actinomycetes in marine sediments are also discussed.  相似文献   

16.
The actinomycete complex of alkaline soils was found to be dominated by alkaliphilic streptomycetes, which showed maximal radial rates of colony growth at pH 8. At pH values of 7 and 10, the growth of these streptomycetes was poor. Alkaliphilic streptomycetes can be morphologically differentiated from other actinomycetes based on their high radial rates of colony growth and increased spore formation in alkaline media as compared to neutral media.  相似文献   

17.
The actinomycete complex of alkaline soils was found to be dominated by alkaliphilic streptomycetes, which showed maximal radial rates of colony growth at pH 8. At pH values of 7 and 10, the growth of these streptomycetes was poor. Alkaliphilic streptomycetes can be morphologically differentiated from other actinomycetes based on their high radial rates of colony growth and increased spore formation in alkaline media as compared to neutral media.  相似文献   

18.
The ubiquitin-like protein NEDD8 is highly conserved in eukaryotes, from man to Schizosaccharomyces pombe. NEDD8 conjugation to cullin proteins is a prerequisite for cullin based E3 ubiquitin ligase activity, and essential for S. pombe viability. Here, we have performed alanine scanning mutagenesis of all conserved surface residues and show that the majority of essential residues were located around the hydrophobic patch and the C-terminus. However, we further identified essential residues not previously reported to be involved in ubiquitin ligase regulation that importantly do not prevent Ned8p conjugation. We also find that mutation of all conserved lysine residues in Ned8p, did not affect yeast viability, suggesting that mono-neddylation is sufficient for yeast viability under most conditions.  相似文献   

19.
The mammalian proto-oncoprotein Cbl and its homologues in Caenorhabditis elegans and Drosophila are evolutionarily conserved negative regulators of the epidermal growth factor receptor (EGF-R). Overexpression of wild-type Cbl enhances down-regulation of activated EGF-R from the cell surface. We report that the Cbl tyrosine kinase-binding (TKB) domain is essential for this activity. Whereas wild-type Cbl enhanced ligand-dependent EGF-R ubiquitination, down-regulation from the cell surface, accumulation in intracellular vesicles, and degradation, a Cbl TKB domain-inactivated mutant (G306E) did not. Furthermore, the transforming truncation mutant Cbl-N (residues 1-357), comprising only the Cbl TKB domain, functioned as a dominant negative protein. It colocalized with EGF-R in intracellular vesicular structures, yet it suppressed down-regulation of EGF-R from the surface of cells expressing endogenous wild-type Cbl. Therefore, Cbl-mediated down-regulation of EGF-R requires the integrity of both the N-terminal TKB domain and additional C-terminal sequences. A Cbl truncation mutant comprising amino acids 1-440 functioned like wild-type Cbl in down-regulation assays. This mutant includes the evolutionarily conserved TKB and RING finger domains but lacks the less conserved C-terminal sequences. We conclude that the evolutionarily conserved N terminus of Cbl is sufficient to effect enhancement of EGF-R ubiquitination and down-regulation from the cell surface.  相似文献   

20.
The conserved, polar loop region of subunit c of the Escherichia coli F1F0 ATP synthase is postulated to function in the coupling of proton translocation through F0 to ATP synthesis in F1. We have used a random mutagenesis procedure to define the essential residues in the region. Oligonucleotide-directed mutagenesis was carried out with a random mixture of mutant oligonucleotides, the oligonucleotide mixture being generated by chemical synthesis by using phosphoramidite nucleotide stocks that were contaminated with the other three nucleotides. Thirty mutant genes coding single-amino-acid substitutions in the region between Glu-37 and Leu-45 of subunit c were tested for function by analyzing the capacity of plasmids carrying the mutant genes to complement a Leu-4----amber subunit c mutant. All substitutions at the conserved Arg-41 residue resulted in loss of oxidative phosphorylation, i.e., transformants could not grow on a succinate carbon source. The other conserved residues were more tolerant to substitution, although most substitutions did result in impaired growth on succinate. We conclude that Arg-41 is essential in the function of the polar loop and that the ensemble of other conserved residues collectively maintain an optimal environment required for that function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号