首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Confluent T51B rat liver epithelial cells promptly began accumulating cyclic AMP-binding sites on their surfaces when they were stimulated from quiescence by serum growth factors in medium containing 1.8 mM Ca2+, but they began losing the accumulated binding sites shortly before initiating DNA replication. When the medium contained only 0.02 mM Ca2+, the cells still accumulated surface cyclic AMP-binding sites, but they did not initiate DNA replication and tended to continue accumulating the binding sites. The cyclic AMP-binding sites were eliminated completely by treating intact cells for 5 minutes with 0.005% trypsin (which did not damage the cells), and cyclic AMP caused them to be released from intact, undamaged cells into the medium. The binding sites also comigrated electrophoretically with purified regulatory subunits of type I cyclic AMP-dependent protein kinase, and to a lesser extent the regulatory subunit of type II cyclic AMP-dependent protein kinase. Therefore, it is likely that a transient accumulation of cyclic AMP-dependent protein kinases on the outer surface of the plasma membrane is part of the T51B rat liver cell's prereplicate program.  相似文献   

2.
Adenosine 3':5' -monophosphate (cyclic AMP) -dependent protein kinase from bovine heart muscle catalyzes the phosphorylation of its regulatory, cyclic AMP-binding subunit. Phosphorylation enhances net dissociation of the enzyme by cyclic AMP. Chromatography on omega-aminohexyl-agarose was used to study the effects of phosphorylation on cyclic AMP binding and subunit dissociation and reassociation. This method permitted rapid separation of the catalytic subunit from the cyclic AMP -binding protein and holoenzyme. Phospho- and dephosphoprotein kinases were found to dissociate to the same extent at any given concentration of cyclic AMP and completely at saturation. At equilibrium, the amount of cyclic AMP bound was the same for both forms of enzyme and was directly proportional to the degree of dissociation of the holoenzyme. In the absence of cyclic AMP, phospho- and dephospho-cyclic AMP-binding proteins reassociated completely with the catalytic subunit. However, the rate of reassociation of the dephospho-cyclic AMP-binding protein was at least 5 times greater than the phospho-cyclic AMP-binding protein. Retardation of reassociation was directly proportional to the extent of phosphorylation. We conclude that the degree to which the cyclic AMP-binding protein is phosphorylated markedly affects its intrinsic ability to combine with the catalytic subunit to regenerate the inactive cyclic nucleotide-dependent kinase and that the state of phosphorylation of this subunit may be important in detemining the proportion of dissociated (active) and reassociated (inactive) protein kinase at any given time.  相似文献   

3.
The ability of cyclic AMP to inhibit growth, cause cytolysis and induce synthesis of cyclic AMP-phosphodiesterase in S49.1 mouse lymphoma cells is deficient in cells selected on the basis of their resistance to killing by 2 mM dibutyryl cyclic AMP. The properties of the cyclic AMP-dependent protein kinase (ATP:protein phosphotransferase, EC 2.7.1.37) in the cyclic AMP-sensitive (S) and cyclic AMP-resistant (R) lymphoma cells were comparatively studied. The cyclic AMP-dependent protein kinase activity or R cells cytosol exhibits an apparent Ka for activation by cyclic AMP 100-fold greater than that of the enzyme from the parental S cells. The free regulatory and catalytic subunits from both S and R kinase are thermolabile, when associated in the holoenzyme the two subunits are more stable to heat inactivation in R kinase than in S kinase. The increased heat stability of R kinase is observed however only for the enzyme in which the catalytic and cyclic AMP-binding activities are expressed at high cyclic AMP concentrations (10(-5)--10(-4) M), the activities expressed at low cyclic AMP concentrations (10(-9)--10(-6) M) being thermolabile. The regulatory subunit of S kinase can be stabilized against heat inactivation by cyclic AMP binding both at 2-10(-7) and 10(-5) M cyclic AMP concentrations. In contrast, the regulatory subunit-cyclic AMP complex from R kinase is stable to heat inactivation only when formed in the presence of high cyclic AMP concentrations (10(-5)M). The findings indicate that the transition from a cyclic AMP-sensitive to a cyclic AMP-resistant lymphoma cell phenotype is related to a structural alteration in the regulatory subunit of the cyclic AMP-dependent protein kinase which has affected the protein's affinity for cyclic AMP and its interaction with the catalytic subunit.  相似文献   

4.
1. DEAE-cellulose chromatography of mouse brain cytosol indicated the presence of only the type II isoenzyme of cyclic AMP-dependent protein kinase. Mouse heart cytosol contained approximately equal amounts of the type I and type II isoenzymes. 2. Both brain and heart type II isoenzymes reassociated after a transient exposure to cyclic AMP, but the heart type I isoenzyme remained dissociated. 3. Elution of brain cytosol continuously exposed to cyclic AMP resolved multiple peaks of protein kinase and cyclic AMP-binding activities. A single peak of kinase and multiple peaks of cyclic AMP-binding activities were found under the same conditions with heart cytosol. Various control experiments suggested that the heterogeneity within the brain type II isoenzymic class had not been caused by proteolysis. 4. Kinetic experiments with unfractionated brain cytosol showed that the binding of cyclic AMP, the dissociation of cyclic AMP from protein and the rate of heat denaturation of the cyclic AMP-binding activity gave results consistent with the presence of multiple binding species. 5. It concluded that the type II isoenzymic peak obtained by DEAE-cellulose chromatography of mouse brain cytosol represents a class of enzymes containing multiple regulatory and catalytic subunits. The two heart cytosol isoenzymes contain a common catalytic subunit. The degree of protein kinase 'microheterogeneity", defined as the presence of multiple regulatory and/or catalytic subunits within a single isoenzymic class, appears to be tissue-specific.  相似文献   

5.
Five peaks of cyclic AMP-binding activity could be resolved by DEAE-cellulose chromatography of bovine adrenal-cortex cytosol. Two of the binding peaks co-chromatographed with the catalytic activities of cyclic AMP-dependent protein kinases (ATP-protein phosphotransferase, EC 2.7.1.37) of type I or type II respectively. A third binding protein was eluted between the two kinases, and appeared to be the free regulatory moiety of protein kinase I. Two of the binding proteins for cyclic AMP, sedimenting at 9S in sucrose gradients, could also bind adenosine. They bound cyclic AMP with an apparent equilibrium dissociation constant (K(d)) of about 0.1mum, and showed an increased binding capacity for cyclic AMP after preincubation in the presence of K(+), Mg(2+) and ATP. The two binding proteins differed in their apparent affinities for adenosine. The isolated regulatory moiety of protein kinase I had a very high affinity for cyclic AMP (K(d)<0.1nm). At low ionic strength or in the presence of MgATP, the high-affinity binding of cyclic AMP to the regulatory subunit of protein kinase I was decreased by the catalytic subunit. At high ionic strength and in the absence of MgATP the high-affinity binding to the regulatory subunit was not affected by the presence of catalytic subunit. Under all experimental conditions tested, dissociation of protein kinase I was accompanied by an increased affinity for cyclic AMP. To gain some insight into the mechanism by which cyclic AMP activates protein kinase, the interaction between basic proteins, salt and the cyclic nucleotide in activating the kinase was studied.  相似文献   

6.
Triethyltin bromide activates the cyclic AMP-dependent protein kinases of human red cell membranes and of bovine brain. Additions of 25-500 microM triethyltin to red cell ghosts resulted in enhanced phosphorylation of ghost proteins. When added to partially purified cyclic AMP-dependent protein kinases from red cell ghosts or bovine brain, stimulation of the phosphorylation of calf thymus histone was observed. The enhancement of kinase activity was due to release of catalytic subunits from the intact protein kinase. Brief exposure of the partially purified enzymes to triethyltin, followed by DE52 chromatography, resulted in elution profiles for regulatory and catalytic subunits that were similar to the profile resulting after cyclic AMP activation. Triethyltin interacts with both regulatory and catalytic subunits. When it was added to the partially purified cyclic AMP-dependent protein kinases from human red cell ghosts or bovine brain, noncompetitive inhibition of cyclic AMP binding to the regulatory subunit of the enzyme was observed. It interacted with the catalytic subunit to produce slow inhibition of catalytic activity. The inhibition was non-competitive with respect to both histone and ATP. When intact red cells were subjected to brief exposure with triethyltin, enhanced phosphorylation of certain membrane proteins occurred, suggesting that the activation of the cyclic AMP protein kinases by triethyltin may be physiologically significant.  相似文献   

7.
The effect of a lethal toxic fragment of staphylococcal alpha-toxin on the activity of adenosine 3',5'-monophosphate(cyclic AMP)-dependent protein kinase was examined. 1. The lethal toxic fragment produced a dose-dependent decrease in both the binding of cyclic AMP to the regulatory subunit and phosphorylation activity of cyclic AMP-dependent protein kinase obtained from rabbit skeletal muscles up to a plateau at a 50% inhibitory effect. The decrease in the activity of protein kinase observed with low doses of the lethal toxic fragment (0.1 microM) resulted from a competitive inhibition, probably by its interaction with the cyclic AMP-binding site in the regulatory subunit molecule. 2. The effects of a lethal toxic fragment and epinephrine on the cyclic AMP level and protein kinase activity were investigated in the perfused rabbit heart slices. The lethal toxic fragment attenuated the stimulation of cyclic AMP-dependent protein kinase activity ratio by epinephrine. 3. It is suggested that the specific action of a lethal toxic fragment on the cellular membrane enzymes may be attributable to the inhibition of the cyclic AMP-dependent protein kinase activity.  相似文献   

8.
An antiserum against the catalytic subunit C of cyclic AMP-dependent protein kinase, isolated from bovine heart type II protein kinase, was produced in rabbits. Reaction of the catalytic subunit with antiserum and separation of the immunoglobulin G fraction by Protein A-Sepharose quantitatively removed the enzyme from solutions. Comparative immunotitration of protein kinases showed that the amount of antiserum required to eliminate 50% of the enzymic activity was identical for pure catalytic subunit, and for holoenzymes type I and type II. The reactivity of the holoenzymes with the antiserum was identical in the absence or the presence of dissociating concentrations of cyclic AMP. Most of the holoenzyme (type II) remains intact when bound to the antibodies as shown by quantification of the regulatory subunit in the supernatant of the immunoprecipitate. Titration with the antibodies also revealed the presence of a cyclic AMP-independent histone kinase in bovine heart protein kinase I preparations obtained by DEAE-cellulose chromatography. Cyclic AMP-dependent protein kinase purified from the particulate fraction of bovine heart reacted with the antiserum to the same degree as the soluble enzyme, whereas two cyclic AMP-independent kinases separated from the particle fraction neither reacted with the antiserum nor influenced the reaction of the antibodies with the cyclic AMP-dependent protein kinase. Immunotitration of the protein kinase catalytic subunit C from rat liver revealed that the antibodies had rather similar reactivities towards the rat liver and the bovine heart enzyme. This points to a relatively high degree of homology of the catalytic subunit in mammalian tissues and species. Broad applicability of the antiserum to problems related to cyclic AMP-dependent protein kinases is thus indicated.  相似文献   

9.
The effect of vasopressin on the toad urinary bladder has been shown to be mediated by cyclic AMP. It has been assumed that, as demonstrated for other systems, this involves activation of cyclic AMP-dependent protein kinase. In order to test this hypothesis we investigated the effect of vasopressin on cyclic AMP-dependent protein kinases in epithelial cells of toad bladders. About 80% of protein kinase activity and cyclic AMP-binding capacity was found to be in the cytosol. DEAE-cellulose chromatography showed a pattern of 15--20% type I and 80--85% type II cyclic AMP-dependent protein kinase. Cytosolic kinase was activated 3--4-fold by cyclic AMP with half-maximal activation at 5 . 10(-8) M. Similarly, half-maximal binding of cyclic AMP occurred at 7 . 10(-8) M. Incubation of toad bladders in Ringer's solution containing 0.1 mM 3-isobutyl-1-methylxanthine, prior to homogenization and assay, showed stable cyclic AMP-binding capacity and protein kinase ratio --cyclic AMP/+cyclic AMP. Exposure of bladders to 10 mU/ml of vasopressin for 10 min caused intracellular activation of protein kinase and decrease in cyclic AMP-binding capacity that were maintained for at least 30 min. Incubation of bladders with increasing concentrations of vasopressin (0.5--100 mU/ml) resulted in a discrepancy between a progressive increase in cyclic AMP levels and a levelling off at 10 mU/ml of vasopressin for the changes in protein kinase ratio and cyclic AMP-binding capacity. The increase in kinase ratio was due to higher activity in the absence of exogenous cyclic AMP and was fully inhibitable by a specific protein kinase inhibitor. Using Sephadex G-25-CM50 column chromatography for separation of holoenzyme and free catalytic subunit we demonstrated that the activation of protein kinase in the vasopressin-treated bladders is due to intracellular dissociation of the kinase. These results show that the effect of vasopressin on the toad bladder involves activation of a cytosolic cyclic AMP-dependent protein kinase. The time course and the dose-response curve of the kinase activation closely parallel vasopressin's effect on osmotic water flow.  相似文献   

10.
Binding activity obtained from an established line of hepatoma tissue culture (HTC) cells has a lower apparent affinity for cyclic AMP at physiological pH than has the analogous binding activity from rat liver. However, the apparent binding affinity of HTC preparations can be reversibly increased by adding NaCl or guanidine · HCl. In the presence of such activating substances, a macromolecular inhibitory activity has been chromatographically separated from the cyclic AMP-binding activity. Removal of this inhibitory component causes the apparent affinity of the cyclic AMP-binding activity from HTC cells to increase and resemble that observed with liver preparations. Before treatment with salt, the inhibitory activity seems to be physically associated with the binding activity. Adding the isolated inhibitory component back to a suitably activated binding preparation from HTC cells results in a decrease in the apparent affinity for cyclic AMP. The isolated inhibitory component is devoid of cyclic AMP-binding and cyclic AMP phosphodiesterase activities and has an apparent minimal molecular weight of about 30,000 by gel filtration. It possesses protein kinase activity and seems to be identical to the catalytic subunit of a cyclic AMP-stimulated protein kinase on the basis of chromatographic properties and sensitivities to heat and low pH. This catalytic subunit represents only a minor portion of total cellular protein kinase activity and is also present in liver extracts. However, the binding activity from liver is not inhibited significantly under conditions where the binding from HTC cells is affected by the catalytic subunit. The difference in this inhibitory response between liver and HTC preparations appears to reflect differences in the cyclic AMP-binding proteins themselves.  相似文献   

11.
The regulatory subunit of cyclic AMP-dependent protein kinase I was purified to homogeneity from porcine skeletal muscle by two different procedures, one relying on affinity chromatography with cyclic AMP-Sepharose and the other relying exclusively on ion-exchange and molecular seive chromatography. Both procedures were adapted so that catalytic subunit also could be purified from the same enzyme preparation. In its native form the regulatory subunit was a dimer having a molecular weight of 92,500. Polyacrylamide gels run under denaturing conditions indicated that the dimer was composed of two identical subunits having a molecular weight 45,500. In addition to the dimeric regulatory subunit, a second, smaller cyclic AMP-binding protein frequently was observed. This protein having a molecular weight of 34,500 also was purified to homogeneity and appeared to be a proteolytic fragment derived from the regulatory subunit. Limited proteolysis with trypsin converted the regulatory subunit into a protein having a molecular weight of 34,500 and a polypeptide fragment having a molecular weight of approximately 11,000. Although the 34,500 molecular weight protein retained its capacity to bind cyclic AMP, it was monomeric apparently having lost its ability to aggregate to a dimer.  相似文献   

12.
The ontogeny of protein kinase (ATP: protein phosphotransferase, EC 2.7.1.37) and cyclic AMP-binding activity in subcellular fractions of liver was examined during prenatal and postnatal development of the male rat. 1. Protein kinase activity and cyclic AMP-binding activity were found in the nuclear, microsomal, lysosomal-mitochondrial, and soluble liver fractions. 2. The protein kinase activity of the soluble (105 000 X g supernatant) fraction measured with histone F1 as substrate was stimulated by cyclic AMP. Cyclic AMP did not stimulate the protein kinase activity of the particulate fractions. 3. The protein kinase activity of all subcellular fractions increased rapidly from the activity observed in prenatal liver (3-4 days before birth) to reach maximal activity in 2-day-old rats. Thereafter, the protein kinase activity declined more slowly and regained the prenatal levels at 10 days after birth. 4. Considerable latent protein kinase activity was associated with liver microsomal fractions which could be activated by treatment of microsomes with Triton X-100. The latent microsomal protein kinase activity was highest in prenatal liver, at the time of birth, and 2 days after birth. During the subsequent postnatal development the latent microsomal protein kinase activity gradually declined to insignificantly low levels. 5. During the developmental period examined (4 days before birth to age 60-90 days) marked alterations of the cyclic AMP-binding activity were determined in all subcellular fractions of rat liver. In general, cytosol, microsomal, and lysosomal-mitochondrial cyclic AMP-binding activity was highest in 10-11 day-old rats. Nuclear cyclic AMP-binding activity was highest 3-4 days before birth and declined at birth and during the postnatal period. There was no correlation between the developmental alteration of cyclic AMP-binding activity and cyclic AMP dependency of the protein kinase activity in any of the subcellular fractions. This suggests that the measured cyclic AMP-binding activity does not reflect developmental alterations of the cyclic AMP-binding regulatory subunit of cyclic AMP-dependent protein kinase.  相似文献   

13.
An adenosine 3':5'-monophosphate (cyclic AMP)-binding protein in the human erythrocyte plasma membrane was isotopically labeled using a photoaffinity analog of cyclic AMP, N6-(ethyl 2-diazomalonyl) cyclic [3H]AMP. The cyclic AMP-binding site is located in a polypeptide chain having a molecular weight of 48,000. Cyclic AMP-binding protein and cyclic AMP-dependent protein kinase were solubilized with 0.5% Triton X-100 in 56 mM sodium borate, pH 8, but 32P-labeled membrane phosphoproteins were retained in the Triton-insoluble fraction, suggesting that the membrane-associated binding protein is not a primary substrate for protein kinase. Triton-solubilized and membrane-associated protein kinase activities were stimulated 15- and 17-fold by cyclic AMP, suggesting that the degree of association between the catalytic anc cyclic AMP-binding components was very similar in both preparations. Fractionation and characterization of membrane phosphoproteins have shown that protein III and a co-migrating minor protein are substrates for protein kinase but membrane sialoglycoproteins are not phosphorylated.  相似文献   

14.
Summary The polymeric structure of the cyclic AMP-dependent protein kinase (E.C.2.7.1.37) from the dimorphic fungus Mucor rouxii was analyzed through studies of gel filtration and sucrose gradient centrifugation of the holoenzyme and its subunits and by photoaffinity labeling of the regulatory subunit. It was demonstrated that it is a tetramer composed by two regulatory subunits (R) of mol. wt. 75 000 and two catalytic subunits (C) of mol. wt. 41 000 forming a holoenzyme R2C2 of mol. wt. 242 000. Frictional coefficients of 1.55 and 1.62 for the holoenzyme and for the regulatory dimer, respectively, indicate a significant degree of dimensional asymmetry in both molecules. A procedure for the purification of the catalytic subunit of the kinase is presented. The holoenzyme could be bound to a cyclic AMP-agarose column and the catalytic subunit could be eluted by 0.5 M NaCl, well resolved from the bulk of protein. This particular behaviour of the holoenzyme in cyclic AMP-agarose chromatography allowed the inclusion of this step in the purification of the catalytic subunit and corroborated that the holoenzyme was not dissociated by cyclic AMP alone. The isolated catalytic subunit displays Michaelis-Menten behaviour towards kemptide, protamine and histone and is inhibited by sulfhydryl reagents, indicating that the molecule has at least one cysteine residue essential for enzyme activity. The catalytic activity of the isolated C subunit is inactivated by the mammalian protein kinase inhibitor, and is inhibited by the regulatory subunit from homologous and heterologous sources. In general, the properties of the catalytic subunit suggest a structural similarity between Mucor and mammalian C subunits.Abbreviations C catalytic subunit monomer of protein kinase - R regulatory subunit monomer of protein kinase - 8-N3-cyclic AMP 8-azido-cylic AMP - SDS sodium dodecyl sulfate - Pipes piperazine-N,N-bis(2-ethanesulfonic acid) See AcknowledgementsCareer Investigators from the CONICET  相似文献   

15.
Histone, protamine, poly-L-arginine, and poly-L-lysine enhance the binding of adenosine 3′,5′-monophosphate (cyclic AMP) to rat liver cyclic AMP-dependent protein kinase as determined by Millipore filtration assay. Poly-L-glutamic acid and poly-L-aspartic acid suppress cyclic AMP-binding stimulated by histone. Poly-L-glutamic acid and poly-L-aspartic acid are effective against protein kinase and result in decrease in initial reaction velocity when histone is used as a protein substrate. Incubation of cyclic AMP-dependent protein kinase with 6 μg poly-L-glutamic acid produces half-maximal inhibition of cyclic AMP-dependent protein kinase when 30 μg histone is used as substrate.  相似文献   

16.
Biospecific affinity chromatography has been used to purify specific cyclic AMP and cyclic GMP receptor proteins. Several variables are important for successful purification of the cyclic AMP receptor protein, the most critical being the length of the aliphatic spacer side arm. 8-(2-Aminoethyl)-amino-cyclic AMP coupled to the aliphatic spacer side arm. 8-(2-Aminoethyl)-amino-cyclic AMP coupled to agarose specifically retains the cyclic AMP receptor protein by interaction with the immobilized nucleotide. Binding of the cyclic AMP receptor subunit of cyclic AMP-dependent protein kinase to the immobilized nucleotide results in dissociation of the catalytic protein phosphokinase subunit which is not retained. The retained cyclic AMP receptor protein is subsequently eluted by cyclic AMP. Homogeneous cyclic AMP receptor protein prepared from rabbit skeletal muscle by affinity chromatography has been characterized. The molecular weight of the native protein as determined by analytical ultracentrifugation and polyacrylamide gel electrophoresis at varying acrylamide concentrations is 76 800 and 82 000, respectively. The protein is asymmetric with frictional and axial ratios of 1.64 and 12. SDS and urea polyacrylamide gel electrophoresis indicate that the native cyclic AMP receptor is composed of two identical subunits of 42 700 molecular weight. The native protein dimer binds 2 moles of cyclic AMP per mole of protein and is active in suppressing activity of isolated catalytic subunits of cyclic AMP-dependent protein kinase. Cyclic GMP receptor protein from bovine lung has been purified using the same affinity chromatography media. Since cyclic nucleotide binding to cyclic GMP-dependent protein kinase does not result in dissociation of regulatory receptor and catalytic phosphotransferase subunits, the cyclic GMP-dependent protein kinase holoenzyme is retained on the column and can be subsequently specifically eluted with cyclic GMP.  相似文献   

17.
Cyclic AMP-dependent protein kinase activity in Trypanosoma cruzi.   总被引:1,自引:0,他引:1       下载免费PDF全文
A cyclic AMP-dependent protein kinase activity from epimastigote forms of Trypanosoma cruzi was characterized. Cytosolic extracts were chromatographed on DEAE-cellulose columns, giving two peaks of kinase activity, which were eluted at 0.15 M- and 0.32 M-NaCl respectively. The second activity peak was stimulated by nanomolar concentrations of cyclic AMP. In addition, a cyclic AMP-binding protein co-eluted with the second kinase activity peak. Cyclic AMP-dependent protein kinase activity was further purified by gel filtration, affinity chromatography on histone-agarose and cyclic AMP-agarose, as well as by chromatography on CM-Sephadex. The enzyme ('holoenzyme') could be partially dissociated into two different components: 'catalytic' and 'regulatory'. The 'regulatory' component had specific binding for cyclic AMP, and it inhibited phosphotransferase activity of the homologous 'catalytic component' or of the 'catalytic subunit' from bovine heart. Cyclic AMP reversed these inhibitions. A 'holoenzyme preparation' was phosphorylated in the absence of exogenous phosphate acceptor and analysed by polyacrylamide-gel electrophoresis. A 56 kDa band was phosphorylated. The same preparation was analysed by Western blotting, by using polyclonal antibodies to the regulatory subunits of protein kinases type I or II. Both antibodies reacted with the 56 kDa band.  相似文献   

18.
Cyclic GMP-dependent protein kinase was purified from foetal calf hearts, and its general properties and subunit structure were studied. The enzyme was purified over 900-fold from the heart extract by pH 5.3-isoelectric precipitation, DEAE-cellulose chromatography, Sephadex G-200 filtration and hydroxyapatite treatment. The purified myocardial enzyme, free from cyclic AMP-dependent protein kinase contamination, exhibited an absolute requirement of stimulatory modulator (or crude modulator containing the stimulatory modulator component) for its cyclic GMP-stimulated activity. Inhibitory modulator (protein inhibitor) of cyclic AMP-dependent protein kinase could not stimulate nor inhibit the cyclic GMP target enzyme. The enzyme had Ka values of 0.013, 0.033 and 3.0 micronM for 8-bromo cyclic GMP, cyclic GMP and cyclic AMP respectively. The cyclic GMP-dependent enzyme required Mg2+ and Co2+ for its activity, with optimal concentrations of about 30 and 0.5 mM respectively. The pH optimum for the enzyme activity ranged from 6 to 9. Histones were generally effective substrate proteins. The enzyme exhibited a greater affinity for histones than did the cyclic AMP-dependent class of protein kinase. The holoenzyme (apparent mol.wt. 150 000) of the myocardial cyclic GMP-dependent protein kinase was dissociated into a cyclic GMP-independent catalytic subunit (apparent mol.wt. 60 000) by cyclic GMP and histone. The catalytic subunit required the stimulatory modulator for its activity, as in the case of the holoenzyme in the presence of cyclic GMP.  相似文献   

19.
Cytosolic cyclic AMP-binding capacity and cyclic AMP-dependent protein kinase activity have been studied in relation to differentiation and maturation of rabbit bone marrow erythroblasts. Using cells fractionated by velocity sedimentation at unit gravity, it was found that both activities decreased in dividing cells when calculated in terms of cell number but remained constant per cell volume. After the final cell division, cyclic AMP-dependent protein kinase activity did not change further, whereas cyclic AMP-binding capacity declined. There were no qualitative, but only quantitative, changes in the cyclic AMP-binding proteins that are present in the cytosol of developing erythroblasts. In the immature cells, the apparent KD for the interaction of binding proteins with cyclic AMP was 4 X 10(-8) M. The data suggest that changes in cyclic AMP-binding activity during differentiation of erythroid cells are due both to changes in the amount of binding proteins and in their affinity for cyclic AMP. Plasma membranes of erythroblasts were also able to bind cyclic AMP but only in dividing cells.  相似文献   

20.
Two cyclic AMP-binding proteins, not identical with regulatory subunits of protein kinases, have been isolated from Trypanosoma gambiense. The cyclic AMP receptors were separated by gel chromatography on the basis of their molecular weights. The binding constants of the high and the low molecular weight receptors for cyclic AMP were determined to be 0.4 muM and 0.6 muM, respectively. Cyclic IMP and cyclic GMP compete with cyclic AMP for the binding sites of both receptors. The cyclic AMP binding of the low molecular weight receptor was competitively inhibitied by adenine derivatives. The binding capacity of the high molecular weight receptor was enhanced about two-fold by proteolytic modification with trypsin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号