首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《FEMS microbiology letters》1997,147(2):209-213
The recA gene of Paracoccus denitrificans has been isolated from a genomic library by hybridization with the Rhodobacter sphaeroides recA gene. Its complete nucleotide sequence consists of 1071 bp encoding a polypeptide of 356 amino acids. Nucleotide sequence analysis of the P. denitrificans recA gene revealed the closest identities with the R. sphaeroides and the Rhodobacter capsulatus recA genes. Nevertheless, and surprisingly, recA genes of these two phototrophic bacteria are not DNA damage-inducible when introduced into P. denitrificans cells, whereas recA genes of both P. denitrificans and Rhizobium etli are. These results suggest that the promoters of P. denitrificans and R. etli recA genes have a similar regulatory sequence. A recA-defective mutant of P. denitrificans has also been constructed by replacement of the active recA gene by an in vitro inactivated gene copy.  相似文献   

3.
The characteristic ability of Gluconobacter oxydans to incompletely oxidize numerous sugars, sugar acids, polyols, and alcohols has been exploited in several biotechnological processes, for example vitamin C production. The genome sequence of G. oxydans 621H is known but molecular tools are needed for the characterization of putative proteins and for the improvement of industrial strains by heterologous and homologous gene expression. To this end, promoter regions for the genes encoding G. oxydans ribosomal proteins L35 and L13 were introduced into the broad-host-range plasmid pBBR1MCS-2 to construct two new expression vectors for gene expression in Gluconobacter spp. These vectors were named pBBR1p264 and pBBR1p452, respectively, and have many advantages over current vectors for Gluconobacter spp. The uidA gene encoding β-D-glucuronidase was inserted downstream of the promoter regions and these promoter-reporter fusions were used to assess relative promoter strength. The constructs displayed distinct promoter strengths and strong (pBBR1p264), moderate (pBBR1p452) and weak (pBBR1MCS-2 carrying the intrinsic lac promoter) promoters were identified.  相似文献   

4.
氧化葡萄糖酸杆菌Gluconobacter oxydans NH-10能够转化D-阿拉伯糖醇,经木酮糖生成木糖醇,但该菌中存在的NAD+型D-阿拉伯糖醇脱氢酶可将中间产物D-木酮糖还原成D-阿拉伯糖醇,从而影响木糖醇的积累.利用同源重组基因敲除的方法构建G.oxydans NH-10 NAD+型D-阿拉伯糖醇脱氢酶( sArDH)基因敲除突变株.PCR结果显示:sArDH基因在1株重组菌中完全被卡那抗性基因替代,表明sArDH基因敲除突变体构建成功.生物学特性鉴定显示:突变菌在菌落形态,生长状态方面与原始菌无明显差异.静息细胞转化D-阿拉伯糖醇结果显示,突变株不存在还原D-木酮糖产D-阿拉伯糖醇的逆反应,终产物木糖醇的产量有所提高.  相似文献   

5.
A bacterium isolated from patulin-contaminated apples was capable of degrading patulin to a less-toxic compound, ascladiol. The bacterium was identified as Gluconobacter oxydans by 16S rRNA gene sequencing, whereas ascladiol was identified by liquid chromatography-tandem mass spectrometry and proton and carbon nuclear magnetic resonance. Degradation of up to 96% of patulin was observed in apple juices containing up to 800 microg/ml of patulin and incubated with G. oxydans.  相似文献   

6.
Intergeneric protoplast fusion between 2,5-diketo-gluconic acid producing Gluconobacter oxydans (ATCC 9937) and a mutant strain of Corynebacterium species (ATCC 31090), capable of reducing 2,5-diketo-gluconic acid to 2-keto-L-gulonic acid, a penultimate step in vitamin C production) resulted in viable recombinants. Some of the fusion products exhibited the capacity to convert D-glucose to 2-keto-L-gulonic acid, but the conversion rate is low.  相似文献   

7.
Certain strains of Gluconobacter oxydans have been known since the 1940s to produce the enzyme dextran dextrinase (DDase; EC2.4.1.2)—a transglucosidase converting maltodextrins into (oligo)dextran. The enzyme catalyses the transfer of an α1,4 linked glucosyl unit from a donor to an acceptor molecule, forming an α1,6 linkage: consecutive glucosyl transfers result in the formation of high molecular weight dextran from maltodextrins. In the early 1990s, the group of K. Yamamoto in Japan revived research on DDase, focussing on the purification and characterisation of the intracellular DDase produced by G. oxydans ATCC 11894. More recently, this was taken further by Y. Suzuki and coworkers, who investigated the properties and kinetics of the extracellular DDase formed by the same strain. Our group further elaborated on fermentation processes to optimise DDase production and dextran formation, DDase characterisation and its use as a biocatalyst, and the physiological link between intracellular and extracellular DDase. Here, we present a condensed overview of the current scientific status and the application potential of G. oxydans DDase and its products, (oligo)dextrans. The production of DDase as well as of dextran is first described via optimised fermentation processes. Specific assays for measuring DDase activity are also outlined. The general characteristics, substrate specificity, and mode of action of DDase as a transglucosidase are described in detail. Two forms of DDase are produced by G. oxydans depending on nutritional fermentation conditions: an intracellular and an extracellular form. The relationship between the two enzyme forms is also discussed. Furthermore, applications of DDase, e.g. production of (oligo)dextran, transglucosylated products and speciality oligosaccharides, are summarized.  相似文献   

8.
Gluconobacter oxydans was grown successively in glucose and nitrogen-limited chemostat cultures. Construction of mass balances of organisms growing at increasing dilution rates in glucose-limited cultures, at pH 5.5, revealed a major shift from extensive glucose metabolism via the pentose phosphate pathway to the direct pathway of glucose oxidation yielding gluconic acid. Thus, whereas carbon dioxide production from glucose accounted for 49.4% of the carbon input at a dilution rate (D)=0.05 h-1, it accounted for only 1.3% at D=0.26 h-1. This decline in pentose phosphate pathway activity resulted in decreasing molar growth yields on glucose. At dilution rates of 0.05 h-1 and 0.26 h-1 molar growth yields of 19.5 g/mol and 3.2 g/mol, respectively, were obtained. Increase of the steady state glucose concentration in nitrogen-limited chemostat cultures maintained at a constant dilution rate also resulted in a decreased flow of carbon through the pentose phosphate pathway. Above a threshold value of 15–20 mM glucose in the culture, pentose phosphate pathway activity almost completely inhibited. In G. oxydans the coupling between energy generation and growth was very inefficient; yield values obtained at various dilution rates varied between 0.8–3.4 g/cells synthesized per 0.5 mol of oxygen consumed.  相似文献   

9.
Summary The inhibitory effects of glycerol on Gluconobacter oxydans were measured separately. The kinetics of oxygen uptake rate representing the DHA production, the CO2 evolution rate representing the assimilation of the product, and the specific growth rate were mathematically modelled. Glycerol does not inhibit DHA formation and CO2-evolution.now: Institut für Biotechnologie, TU Graz, Petersgasse 12, 8010 Graz, Austria  相似文献   

10.
D-xylose is one of the most abundant carbohydrates in nature. This work focuses on xylose metabolism of Gluconobacter oxydans as revealed by a few studies conducted to understand xylose utilization by this strain. Interestingly, the G. oxydans 621H Δmgdh strain (deficient in membrane-bound glucose dehydrogenase) was greatly inhibited when grown on xylose and no xylonate accumulation was observed in the medium. These experimental observations suggested that the mgdh gene was responsible for the conversion of xylose to xylonate in G. oxydans, which was also verified by whole-cell biotransformation. Since 621H Δmgdh could still grow on xylose in a very small way, two seemingly important genes in the oxo-reductive pathway for xylose metabolism, a xylitol dehydrogenase-encoding gox0865 (xdh) gene and a putative xylulose kinase-encoding gox2214 (xk) gene, were knocked out to investigate the effects of both genes on xylose metabolism. The results showed that the gox2214 gene was not involved in xylose metabolism, and there might be other genes encoding xylulose kinase. Though the gox0865 gene played a less important role in xylose metabolism compared to the mgdh gene, it was significant in xylitol utilization in G. oxydans, which meant that gox0865 was a necessary gene for the oxo-reductive pathway of xylose in vivo. To sum up, when xylose was used as the carbon source, the majority of xylose was directly oxidized to xylonate for further metabolism in G. oxydans, whereas only a minor part of xylose was metabolized by the oxo-reductive pathway.  相似文献   

11.
The 2-ketoreductase from Gluconobacter oxydans (SC 13851) catalyzes the reduction of 2-pentanone to (S)-(+)-2-pentanol. The 2-ketoreductase was purified 295-fold to homogeneity from G. oxydans cell extracts. The purified 2-ketoreductase had a molecular mass of 29 kDa with a specific activity of 17.7 U/mg. (S)-(+)-2-pentanol was prepared on a pilot scale (3.2 kg of 2-pentanone input) using Triton X-100-treated G. oxydans cells. After 46 h, 1.06 kg (32.3 M%) of (S)-(+)-2-pentanol of >99% enantiomeric excess (ee) was produced. Journal of Industrial Microbiology & Biotechnology (2000) 25, 171–175. Received 01 May 2000/ Accepted in revised form 28 June 2000  相似文献   

12.
氧化葡萄糖酸杆菌酶学和分子生物学研究   总被引:1,自引:0,他引:1  
对氧化葡萄糖酸杆菌初级代谢途径中的关键酶及分子生物学研究做了系统的评述 ,展望了分子技术改造氧化葡萄糖酸杆菌和优化 2 KGA代谢途径的可能。  相似文献   

13.
A host vector system in Gluconobacter oxydans was constructed. An Acetobacter-Escherichia coli shuttle vector was introduced with the efficiency of 10(4) transformants/microg of DNA. Next, aiming for a self-cloning vector, we found a cryptic plasmid (which we named pAG5) of 5648 bp in G. oxydans strain IFO 3171, and sequenced the nucleotides. The plasmid seemed to have only one open reading flame (ORF) for a possible replication protein. Shuttle vectors of Gluconobacter-E. coli were constructed with the plasmid pAG5 and an E. coli vector, pUC18.  相似文献   

14.
Gluconate:NADP 5-oxidoreductase (GNO) from the acetic acid bacterium Gluconobacter oxydans subsp. oxydans DSM3503 was purified to homogeneity. This enzyme is involved in the nonphosphorylative, ketogenic oxidation of glucose and oxidizes gluconate to 5-ketogluconate. GNO was localized in the cytoplasm, had an isoelectric point of 4.3, and showed an apparent molecular weight of 75,000. In sodium dodecyl sulfate gel electrophoresis, a single band appeared corresponding to a molecular weight of 33,000, which indicated that the enzyme was composed of two identical subunits. The pH optimum of gluconate oxidation was pH 10, and apparent Km values were 20.6 mM for the substrate gluconate and 73 microM for the cosubstrate NADP. The enzyme was almost inactive with NAD as a cofactor and was very specific for the substrates gluconate and 5-ketogluconate. D-Glucose, D-sorbitol, and D-mannitol were not oxidized, and 2-ketogluconate and L-sorbose were not reduced. Only D-fructose was accepted, with a rate that was 10% of the rate of 5-ketogluconate reduction. The gno gene encoding GNO was identified by hybridization with a gene probe complementary to the DNA sequence encoding the first 20 N-terminal amino acids of the enzyme. The gno gene was cloned on a 3.4-kb DNA fragment and expressed in Escherichia coli. Sequencing of the gene revealed an open reading frame of 771 bp, encoding a protein of 257 amino acids with a predicted relative molecular mass of 27.3 kDa. Plasmid-encoded gno was functionally expressed, with 6.04 U/mg of cell-free protein in E. coli and with 6.80 U/mg of cell-free protein in G. oxydans, which corresponded to 85-fold overexpression of the G. oxydans wild-type GNO activity. Multiple sequence alignments showed that GNO was affiliated with the group II alcohol dehydrogenases, or short-chain dehydrogenases, which display a typical pattern of six strictly conserved amino acid residues.  相似文献   

15.
Abstract: Conjugal transfer of a series of incompatibility group P and Q plasmids has been studied in the acetic acid bacterium, Gluconobacter oxydans ssp. suboxydans . Transfer frequencies for the IncP/Q vectors ranged from 10−5−10−9 exconjugants per recipient cell. It was found in the case of the IncP vector, pRK290, that Bgl II insert constructs displayed increased conjugal transfer frequencies over pRK290 per se, the parent plasmid. A gentamycin-resistant encoding pRK290 vector which was constructed offers considerable potential as a versatile gene delivery system for Gluconobacter . The lactose transposon, Tn951, was used as a model to examine heterologous gene expression in G. oxydans ssp. suboxydans . The expression level of Tn951 encoded β-galactosidase in this strain was found to be less than 5% of that found in the parent Escherichia coli strain, JC3272.  相似文献   

16.
氧化葡萄糖酸杆菌SCB329和苏云金芽孢杆菌SCB933是混合发酵产生维生素C前体2-KLG两株主要菌种,本文对氧化葡萄糖酸杆菌SCB329的纯培养,传代及纯小菌的保存及其对产酸的影响作了研究。  相似文献   

17.
L Gao  J Zhou  J Liu  G Du  J Chen 《Journal of bacteriology》2012,194(16):4455-4456
Gluconobacter oxydans is known for its incomplete oxidation of a wide range of alcohols, sugars, and acids in a bioprocess. The corresponding oxidation products are secreted almost completely into the medium. Here, we present the high-quality draft genome sequence of G. oxydans WSH-003, an industrial strain with both high l-sorbose productivity and extreme tolerance to saccharides and alditols.  相似文献   

18.
Gluconobacter oxydans enable to oxidize sugars and polyols incompletely to corresponding materials with potential industrial applications, containing around 75 putative dehydrogenases. One of these putative dehydrogenases, Gox2181, was cloned and expressed in Escherichia coli BL21 (DE3), and its X-ray crystal structure was determined to a resolution of 1.8 Å. Gox2181 formed a homo-tetramer in the crystal that was coincident with the apparent molecular mass determined in the solution. Gox2181 displayed α/β-folding patterns, the conserved catalytic tetrad of Asn119-Ser147-Tyr162-Lys166, and the NAD-binding pocket, which aligned well with the ‘classical’ type of short-chain dehydrogenase/reductase (SDR) enzymes. Gox2181 was denoted SDR51C based on the SDR nomenclature system. The purified recombinant Gox2181 was demonstrated to be NAD(H)-dependent and active towards a wide range of substrates, including sugar alcohols, secondary alcohols, ketones, and ketoses. Among the substrates tested, Gox2181 displayed preference for secondary hydroxyl or carbonyl groups, showing low Km values with d-arabitol and butanedione.  相似文献   

19.
A novel water-soluble dextran was synthesized from maltodextrin by cell-free extract of Gluconobacter oxydans DSM 2003. The dextran was purified by size exclusion chromatography, and the structure was determined by Fourier transform infrared spectroscopy, nuclear magnetic resonance, and gas chromatography-mass spectrometer. Based on the spectral data, we found that the dextran contained only D-glucose residues. The ratio of nonreducing end glucopyranosyl (Glcp) to 6-linked Glcp to 4,6-linked Glcp was estimated to be 8.62:78.79:12.59 by methylation analysis. This result indicated the existence of a small proportion of α(1,4) branches in α(1,6) glucosyl linear chains. Here, we reported the first time a novel dextran was synthesized by G. oxydans DSM 2003.  相似文献   

20.
Gluconobacter oxydans is well known for the limited oxidation of compounds and rapid excretion of industrially important oxidation products. The dehydrogenases responsible for these oxidations are reportedly bound to the cell's plasma membrane. This report demonstrates that fully viable G. oxydans differentiates at the end of exponential growth by forming dense regions at the end of each cell observed with the light microscope. When these cells were thin sectioned, their polar regions contained accumulations of intracytoplasmic membranes and ribosomes not found in undifferentiated exponentially growing cells. Both freeze-fracture-etched whole cells and thin sections through broken-cell envelopes of differentiated cells demonstrate that intracytoplasmic membranes occur as a polar accumulation of vesicles that are attached to the plasma membrane. When cells were tested for the activity of the plasma membrane-associated glycerol dehydrogenase, those containing intracytoplasmic membranes were 100% more active than cells lacking these membranes. These results suggest that intracytoplasmic membranes are formed by continued plasma membrane synthesis at the end of active cell division.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号