首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Limitations on pollen and resources may significantly affect plant reproduction in fragmented habitats. In this study, phenology and pollinator frequency and activity were investigated to estimate the role of pollinators in Zygophyllum xanthoxylum reproduction, and this species is ecologically important in northwest China. In addition, the relative impact of restrictive amounts of pollen and resources on the seed set per flower was evaluated. It was found that adding pollen boosted the size of the seed set per flower, but had no significant effect on the number of flowers. By contrast, the addition of resources increased flower numbers as well as had a slight impact on the seed set per flower. These results indicate the amount of available pollen is a limiting factor for reproductive success. Moreover, Apis mellifera was identified as the most effective pollinator of Z. xanthoxylum, and there were more overall pollinators and visitations in the control than in the fragmented habitats. Furthermore, the limitations in pollen were more restrictive in the fragmented area than in the control. This was due to increased pollinator visitations in the control that could ameliorate the effects of lower pollen levels. When there is a limited availability of suitable pollinators, self‐pollination is critical in fragmented habitats. Z. xanthoxylum has reproductive strategies that aid in adapting to harsh environments, including protogyny and delayed selfing.  相似文献   

2.
The loss of bird species following human colonization of New Zealand has raised concerns about the consequences for crucial ecosystem functions such as pollination. The understorey shrub Alseuosmia macrophylla (Alseuosmiaceae) exhibits characteristics typical of a bird pollination syndrome, but populations still persist in northern North Island forest remnants despite the local extinction of most endemic bird pollinators, leading to the suggestion that moths – rather than birds – may be the primary pollinators. The aim of this study was to quantify the importance of endemic birds as pollinators of A. macrophylla over several years by comparing plants on Little Barrier Island (LBI), where all extant endemic bird pollinators still occur, to plants at sites on the adjacent North Island in the Waitakere Ranges (WTK), where only one of these species remains common. Flowers on LBI were visited by endemic bellbirds (Anthornis melanura) and stitchbirds (Notiomystis cincta), while at WTK sites the most common visitors were the recently arrived silvereye (Zosterops lateralis) and the introduced honeybee (Apis mellifera), both of which acted principally as nectar robbers. Caged flowers on LBI had significantly lower fruit set than open flowers, and plants at WTK were significantly more pollen‐limited than plants on LBI. This provides evidence that the loss of endemic pollinating birds is the most likely reason for the high pollen limitation found in some North Island A. macrophylla populations, and the very low seed set of these populations could have serious implications for the long‐term persistence of this species.  相似文献   

3.
Many orchids produce no nectar rewards. Foraging pollinators should visit more flowers per inflorescence in species with nectar, which could increase geitonogamous self-fertilization. If a history of selfing decreases genetic load, then nectar-producing orchids should harbour lower inbreeding depression than nectarless species. Here, I tested this hypothesis by quantifying inbreeding depression and pollinator limitation in populations of three closely related orchid species, one of which provides nectar. I also compared inbreeding depression for nectarless and nectar-producing species of orchids using published studies. All field populations expressed pollinator limitation, but the nectar-providing species was intermediate to the two nectarless species. All populations expressed inbreeding depression, and levels increased in later life-history stages. There was no tendency for nectarless species to express higher inbreeding depression either in experiments or published studies. Nectarless orchids may not express higher levels of inbreeding depression because pollinators fail to visit more flowers in nectar-bearing species, because such visitations do not result in greater selfing, and/or because higher selfing may be ineffective in purging the mutations that cause load.  相似文献   

4.
5.
Effective interactions between plants and pollinators are essential for the reproduction of plant species. Pollinator exclusion experiments and pollen supplementation experiments quantify the degree to which plants depend on animal pollinators and the degree to which plant reproduction is pollen limited. Pollen supplementation experiments have been conducted across the globe, but are rare in high latitude regions. To fill this knowledge gap, we experimentally investigated the dependence on animal pollinators and magnitude of pollen limitation in eight plant species north of the Arctic Circle in Lapland, Finland. Our findings show that all plant species were pollinator dependent, but not pollen limited. We discuss several mechanisms that might buffer our focal plants from pollen limitation, including plant and pollinator generalization, and attractive plant traits. Our results demonstrate that many plant species north of the Arctic Circle are currently receiving adequate pollinator service and provide a baseline for future comparisons of pollinator dependence and pollen limitation in the Arctic across space and time.  相似文献   

6.
Calotropis procera (Ait.) R.Br. (Apocynaceae), an invasive woody milkweed, has expanded its range in northern Australia affecting rangeland and pastoral productivity. While self‐compatibility should enhance the species range expansion, spread of C. procera is limited by the availability of larger wasp and bee species that are able to vector its solid pollinia. Pollination efficiency is thus likely dependent on both pollinator abundance and plant density. Calotropis procera flowers year round in Australia but fruiting is limited to the warm months of the year when pollinators are most abundant, indicating that seasonal regulation of reproduction may be due to pollinator limitation. We examine the propositions that C. procera reproduction is regulated by the interaction between plant population density and pollinator pressure and that low pollinator pressure causes low per capita plant fecundity. All pollinators belonged to Order Hymenoptera and pollinator composition was similar at six of the seven sites. Fruit production per plant (fecundity) was lower above and below intermediate densities (350–550 plants ha?1) of flowering plants with evidence of a weak Allee effect at lower plant density. Pollinator visitation rates per plant were low at high and low plant densities, and greatest at intermediate densities, while pollen supplementation experiments showed that C. procera is pollen limited (Pollen Limitation Indexfruit = 0.9) even at intermediate densities. Pollen limitation caused by low pollinator pressure at low plant densities and pollinator satiation at high plant densities may account for these fruit production trends. Management should be conducted in the colder months when pollinator pressure is low and plants are not reproducing. In addition, where stand eradication cannot be achieved in one attempt, management should reduce flowering plants to below intermediate densities where the fecundity per plant is low.  相似文献   

7.

Background and Aims

Mating system is a primary determinant of the ecological and evolutionary dynamics of wild plant populations. Pollen limitation and loss of self-incompatibility genotypes can both act independently to reduce seed set and these effects are commonly observed in fragmented landscapes. This study used a simulation modelling approach to assess the interacting effects of these two processes on plant reproductive performance and population viability for a range of pollination likelihood, self-incompatibility systems and S-allele richness conditions.

Methods

A spatially explicit, individual-based, genetic and demographic simulation model parameterized to represent a generic self-incompatible, short-lived perennial herb was used to conduct simulation experiments in which pollination probability, self-incompatibility type (gametophytic and sporophytic) and S-allele richness were systematically varied in combination to assess their independent and interacting effects on the demographic response variables of mate availability, seed set, population size and population persistence.

Key Results

Joint effects of reduced pollination probability and low S-allele richness were greater than independent effects for all demographic response variables except population persistence under high pollinator service (>50 %). At intermediate values of 15–25 % pollination probability, non-linear interactions with S-allele richness generated significant reductions in population performance beyond those expected by the simple additive effect of each independently. This was due to the impacts of reduced effective population size on the ability of populations to retain S alleles and maintain mate availability. Across a limited set of pollination and S-allele conditions (P = 0·15 and S = 20) populations with gametophytic SI showed reduced S-allele erosion relative to those with sporophytic SI, but this had limited effects on individual fecundity and translated into only modest increases in population persistence.

Conclusions

Interactions between pollen limitation and loss of S alleles have the potential to significantly reduce the viability of populations of a few hundred plants. Population decline may occur more rapidly than expected when pollination probabilities drop below 25 % and S alleles are fewer than 20 due to non-additive interactions. These are likely to be common conditions experienced by plants in small populations in fragmented landscapes and are also those under which differences in response between gameptophytic and sporophtyic systems are observed.  相似文献   

8.
补充限制基于生态位理论, 从种子萌发、幼苗存活和生长、繁殖体扩散等生活史阶段的种群统计特征及环境因素(土壤水分、养分、凋落物等)着手, 探讨种群的更新问题。种源限制和微生境限制是补充限制理论研究的核心内容, 但是哪个更为重要并没有统一的结论。种源限制与种子生产、土壤种子库和地下芽库中的繁殖体数量不足有关。其中, 气候的年际波动、土壤种子库寿命和动物的捕食都会影响种子生产在种群更新中的作用; 土壤种子库常被视为种群更新的保险库, 与地上种子雨共同促进种群更新, 但是, 如果土壤里种子具有较高的死亡率和休眠率, 将会降低种子库的作用; 地下芽库及其产生的无性分株对于种群更新的意义更多地体现在干扰后种群更强的恢复能力上。扩散限制是种群更新中的普遍现象, 与种子产量、散布能力、传播媒介、幼苗密度等因素有关。微生境限制主要表现为水分、养分、凋落物等非生物因素以及竞争、捕食等生物因素对种子的活力、萌发性、幼苗的存活力、物质分配等过程的影响, 其重要性随着植物生活史阶段而发生变化。未来需要进行综合的、长期的实验, 并应着重加强种源限制及相关生态过程的进化与生态相结合的机理性研究, 从而更深刻地认识和理解种群更新问题, 建立更为综合、系统的种群更新理论体系。  相似文献   

9.
Pollen limitation and resource limitation have been documented as the major factors responsible for plants commonly producing more ovules than seeds, but few studies have examined pollen deposition directly in natural populations at different sites and times. We investigated the causes of low seed set in four populations of Liriodendron chinense (Magnoliaceae), an insect‐pollinated endangered tree endemic to southern China, over 2–3 years. One pistil potentially produces two ovules. The number of pistils per flower varies among populations, but in three of the four populations the variation in a given population was not significantly different among years. Overall, populations with higher pistil numbers tend to set more seeds per flower, but a positive correlation between pistil numbers and seed production per flower was observed in only one of the four populations. The numbers of pollen grains deposited per stigma varied from 0 to 60. The proportion of pollinated stigmas per flower ranged from 44% to 88% among populations and years. The numbers of pollen grains deposited per stigma and the percentages of pollinated stigmas were significantly different between populations, and two populations showed significant differences between years. A positive correlation between stigmatic pollen load and seed set was sought in ten population‐by‐year combinations but, in a given population, high stigmatic pollen loads did not always result in high seed set. Examination of pollen deposition, pistil and seed production over several sites and years showed that in addition to pollination, other factors such as resource or genetic loads were likely to limit the (lower than 10%) seed set in L. chinense. It appears that small, isolated populations experience severe pollination limitation; one population studied had seed/ovule ratios of 0.84% and 1.88% in 1995 and 1996. © 2002 The Linnean Society of London, Botanical Journal of the Linnean Society, 2002, 140 , 31–38.  相似文献   

10.
植物种群更新限制——从种子生产到幼树建成   总被引:8,自引:0,他引:8  
李宁  白冰  鲁长虎 《生态学报》2011,31(21):6624-6632
更新限制是指种子由于各种原因,不能够萌发并生长成幼树。它作为解释生物多样性的理论,一直受到国内外群落生态学家关注。从种源限制、传播限制和建成限制3个角度,对更新限制机制研究进展进行了综述。从种源限制而言,时空因素是影响植物种群更新限制的重要因素,因为植物结实量存在明显时空变化,造成植物更新个体出现明显的时空规律。从传播限制而言,传播数量、距离和食果动物行为均限制植物种群更新。数量上,缺乏有限传播者势必减少传播数量,但如果种子拥有较高质量,则能逃脱数量限制;距离上,植物更新个体显示出明显的Janzen-Connell格局,但传播距离趋向稳定,形成植物种群的进化稳定对策;食果动物行为上,不同传播者对更新贡献存在差异,捕食者直接降低更新,融入两类动物行为的模型更能反映食果动物对更新的限制。从建成限制而言,环境因子制约植物生长。小尺度下,微生境的好坏对于植物幼苗建成至关重要;大尺度下,植物提供较好的广告效应则能摆脱生境限制。将传播者行为、捕食者行为与幼苗的空间分布格局、种子传播机理模型等结合,建立植物更新限制机理模型应是更新限制未来的研究热点。选择稀有种和古老种为主题的长期更新限制研究,为种群恢复提供指导,也是未来重要研究方向。  相似文献   

11.
Female reproductive success, fruit and seed-set and factors affecting them were measured for 3 years (1995–1997) for 24 populations of Primula sieboldii E. Morren, a threatened Japanese plant species in a highly fragmented landscape in southern Hokkaido. The smaller populations (genets <=; 3) set almost no seeds consistently during the study years. In larger populations (genets >= 7), proportions of failed flowers without damage from fungi or herbivores were relatively high, but fruit set per flower varied among the populations in 1995. Correlations of fruit (r = 0.589, P = 0.011) and seed- set (r = 0.688, P < 0.01) with population pollinator availability were highly significant. In 1995, pollination failure would be the most plausible reason for the variation in reproductive success among the populations. However, pollinator availability was relatively high in all populations in 1996 and 1997. In these years, higher proportions of fruit failed because of antagonistic biological interactions. In the populations with poor pollinator availability in 1995, mean fruit and seed-sets were greater in the long-styled morph than in the short-styled morph. Such between-morph differences are thought to be caused by partial self-compatibility of the long-styled morph and the results of hand pollination experiments support this hypothesis.  相似文献   

12.
We analyze evolution of individual flowering phenologies by combining an ecological model of pollinator behavior with a genetic model of inbreeding depression for plant viability. The flowering phenology of a plant genotype determines its expected daily floral display which, together with pollinator behavior, governs the population rate of geitonogamous selfing (fertilization among flowers on the same plant). Pollinators select plant phenologies in two ways: they are more likely to visit plants displaying more flowers per day, and they influence geitonogamous selfing and consequent inbreeding depression via their abundance, foraging behavior, and pollen carry‐over among flowers on a plant. Our model predicts two types of equilibria at stable intermediate selfing rates for a wide range of pollinator behaviors and pollen transfer parameters. Edge equilibria occur at maximal or minimal selfing rates and are constrained by pollinators. Internal equilibria occur between edge equilibria and are determined by a trade‐off between pollinator attraction to large floral displays and avoidance of inbreeding depression due to selfing. We conclude that unavoidable geitonogamous selfing generated by pollinator behavior can contribute to the common occurrence of stable mixed mating in plants.  相似文献   

13.
Several key characteristics of the species-rich orchid familyare due to its symbiotic relationships with pollinators andmycorrhizal fungi. The majority of species are insect pollinatedand show strong adaptations for outcrossing, such as pollinationby food- and sexual-deception, and all orchids are reliant onmycorrhizal fungi for successful seedling establishment. Recentstudies of orchid pollination biology have shed light on thebarriers to reproductive isolation important to diversificationin different groups of deceptive orchids. Molecular identificationof orchid mycorrhizal fungi has revealed high fungal specificityin orchids that obtain organic nutrients from fungi as adults.Both pollinator and fungal specificity have been proposed asdrivers of orchid diversification. Recent findings in orchidpollination and mycorrhizal biology are reviewed and it is shownthat both associations are likely to affect orchid distributionand population structure. Integrating studies of these symbioseswill shed light on the unparalleled diversification of the orchidfamily. Key words: Mutualism, myco-heterotrophy, pollinator limitation, speciation Received 5 October 2007; Revised 12 December 2007 Accepted 21 December 2007  相似文献   

14.
15.
Pollen limitation (PL) of seed production creates unique conditions for reproductive adaptation by angiosperms, in part because, unlike under ovule or resource limitation, floral interactions with pollen vectors can contribute to variation in female success. Although the ecological and conservation consequences of PL have received considerable attention in recent times, its evolutionary implications are poorly appreciated. To identify general influences of PL on reproductive adaptation compared with those under other seed-production limits and their implications for evolution in altered environments, we derive a model that incorporates pollination and post-pollination aspects of PL. Because PL always favours increased ovule fertilization, even when population dynamics are not seed limited, it should pervasively influence selection on reproductive traits. Significantly, under PL the intensity of inbreeding does not determine whether outcrossing or autonomous selfing can evolve, although it can affect which response is most likely. Because the causes of PL are multifaceted in both natural and anthropogenically altered environments, the possible outcrossing solutions are diverse and context dependent, which may contribute to the extensive variety of angiosperm reproductive characteristics. Finally, the increased adaptive options available under PL may be responsible for positive global associations between it and angiosperm diversity.  相似文献   

16.
Two new concepts, "Limitation Potential" and "Constraint Limitation Sensitivity" are introduced that use definitions derived from metabolic flux analysis (MFA) and metabolic network analysis (MNA). They are applied to interpret a measured flux distribution in the context of all possible flux distributions and thus combine MFA with MNA. The proposed measures are used to quantify and compare the influence of intracellular fluxes on the production yield. The methods are purely based on the stoichiometry of the network and constraints that are given from irreversible fluxes. In contrast to metabolic control analysis (MCA), within this approach no information about the kinetic mechanisms are needed. A limitation potential (LP) is defined as the reduction of the reachable (theoretical) maximum by a measured flux. Measured fluxes that strongly narrow the reachable maximum are assumed to be limiting as the network has no ability to counterbalance the restriction due to the observed flux. In a second step, the sensitivity of the reduced maximum is regarded. This measure provides information about the necessitated changes to reach higher yields. The methods are applied to interpret the capabilities of a network based on measured fluxes for a L-phenylalanine producer. The strain was examined by a series of experiments and three flux maps of the production phase are analyzed. It can be shown that the reachable yield is drastically reduced by the measured efflux into the TCA cycle, while the oxidative pentose-phosphate pathway only plays a secondary role on the reachable maximum.  相似文献   

17.
18.
19.
Stronger pollen limitation should increase competition among plants, leading to stronger selection on traits important for pollen receipt. The few explicit tests of this hypothesis, however, have provided conflicting support. Using the arithmetic relationship between these two quantities, we show that increased pollen limitation will automatically result in stronger selection (all else equal) although other factors can alter selection independently of pollen limitation. We then tested the hypothesis using two approaches. First, we analysed the published studies containing information on both pollen limitation and selection. Second, we explored how natural selection measured in one Ontario population of Lobelia cardinalis over 3 years and two Michigan populations in 1 year relates to pollen limitation. For the Ontario population, we also explored whether pollinator‐mediated selection is related to pollen limitation. Consistent with the hypothesis, we found an overall positive relationship between selection strength and pollen limitation both among species and within L. cardinalis. Unexpectedly, this relationship was found even for vegetative traits among species, and was not found in L. cardinalis for pollinator‐mediated selection on nearly all trait types.  相似文献   

20.
《农业工程》2014,34(4):191-195
Organisms rely on a series of chemical reactions, which are constrained by the availability of key chemical elements, such as carbon (C), nitrogen (N), and phosphorus (P). Ecological stoichiometry provides a tool for analyzing how the balance of elements required by organisms affects food-web dynamics. Ecological stoichiometric theory suggests that the balance between supply and demand of elements is determined by the conversion efficiency from resources to organisms.Autotrophs and heterotrophs commonly face unequal access to and uptake of elements. The stoichiometric variability of autotrophs is based on their ability to maintain the balance of elements required for growth. This creates a challenge for their grazers. Phytoplankton can adjust their P content to ambient nutrient concentrations, while zooplankton cannot store excess nutrients. Ecological stoichiometric theory thus suggests that zooplankton have relatively fixed stoichiometry compared with phytoplankton.Nutrient limitation is common in aquatic systems. Stoichiometric imbalances between phytoplankton and zooplankton mean that zooplankton rarely find optimal food sources, and phytoplankton production is in excess. P availability potentially limits zooplankton growth, because of the high C:P ratio in phytoplankton relative to zooplankton demand. Based on the Liebig minimum principle, organisms are normally limited by a single nutrient, while everything else is in excess. Under P deficiency, excess C cannot be allocated to zooplankton somatic growth, and the net intake of C must balance the C:P ratio of zooplankton. Thus, when zooplankton encounter nutritionally imbalanced foods the elements in excess are released in order to maintain homeostasis. Excess C, released by zooplankton results in two biochemical challenges: (1) to sequester the limiting element and (2) to either store or dispose of the element in surplus.Zooplankton must resort to various physiological solutions to cope with these challenges. As a first option, zooplankton can reduce their C assimilation efficiency but maintain their P assimilation efficiency. Alternatively, after assimilation, excess C may be stored in C-rich compounds. Finally, assimilated excess C could also be disposed of through respiration or extracellular release. Excess C released by zooplankton reduces C transfer efficiency and sequestration in aquatic ecosystems.In aquatic ecosystems, C sequestration largely depends on the balance between uptake and demand for key nutrient elements. These feedback mechanisms have arisen only because organisms must obey stoichiometric rules at the cell and body levels, which greatly constrain the range of element values in ecosystems. Thus, the fate of C in ecosystems is determined by the absolute and relative demands for N and P of each organism. Limiting elements are utilized for growth and transferred in food chains with high efficiency, while non-limiting elements must be disposed of. Therefore, low C:P phytoplankton communities subject to high turnover rates and high productivity are selectively channeled into zooplankton. When zooplankton face high C:P foods, excess C is returned to the environment. Hence, nutrient-deficient phytoplankton constitute poor food, influencing the entire food web and adversely affecting secondary production at all levels.Excess C processed by zooplankton has far-reaching implications for ecosystem food-web functioning and C sequestration. Studies of the fate of excess C in zooplankton would increase the understanding of energy flow and material cycling in aquatic ecosystems. This paper reviews the reasons for P limitation and excess C in zooplankton, principal routes for the disposal of excess C, and the ecological effects of this. In addition, the paper aims to provide insight and a theoretical foundation for related studies in China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号