首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondrial mutants of the green alga Chlamydomonas reinhardtii that are inactivated in the cytochrome pathway of respiration have previously been isolated. Despite the fact that the alternative oxidase pathway is still active the mutants have lost the capacity to grow heterotrophically (dark + acetate) and display reduced growth under mixotrophic conditions (light + acetate). In crosses between wild-type and mutant cells, the meiotic progeny only inherit the character transmitted by the mt parent, which indicates that the mutations are located in the 15.8 kb linear mitochondrial genome. Two new mutants (dum-18 and dum-19) have now been isolated and characterized genetically, biochemically and at the molecular level. In addition, two previously isolated mutants (dum-11 and dum-15) were characterized in more detail. dum-11 contains two types of deleted mitochondrial DNA molecules: 15.1 kb monomers lacking the subterminal part of the genome, downstream of codon 147 of the apocytochrome b (COB) gene, and dimers resulting from head-to-head fusion of asymmetrically deleted monomers (15.1 and 9.5 kb DNA molecules, respectively). As in the wild type, the three other mutants contain only 15.8 kb mitochondrial DNA molecules. dum-15 is mutated at codon 140 of the COB gene, a serine (TCT) being changed into a tyrosine (TAC). dum-18 and dum-19 both inactivate cytochrome c oxidase, as a result of frameshift mutations (addition or deletion of 1 bp) at codons 145 and 152, respectively, of the COX1 gene encoding subunit I of cytochrome c oxidase. In a total of ten respiratory deficient mitochondrial mutants characterized thus far, only mutations located in COB or COXI have been isolated. The possibility that the inactivation of the other mitochondrial genes is lethal for the cells is discussed.  相似文献   

2.
We examined the nucleotide and amino acid sequence variation of the cytochrome c oxidase subunit II (COII) gene from 25 primates (4 hominoids, 8 Old World monkeys, 2 New World monkeys, 2 tarsiers, 7 lemuriforms, 2 lorisiforms). Marginal support was found for three phylogenetic conclusions: (1) sister-group relationship between tarsiers and a monkey/ape clade, (2) placement of the aye-aye (Daubentonia) sister to all other strepsirhine primates, and (3) rejection of a sister-group relationship of dwarf lemurs (i.e., Cheirogaleus) with lorisiform primates. Stronger support was found for a sister-group relationship between the ring-tail lemur (Lemur catta) and the gentle lemurs (Hapalemur). In congruence with previous studies on COII, we found that the monkeys and apes have undergone a nearly two-fold increase in the rate of amino acid replacement relative to other primates. Although functionally important amino acids are generally conserved among all primates, the acceleration in amino acid replacements in higher primates is associated with increased variation in the amino terminal end of the protein. Additionally, the replacement of two carboxyl-bearing residues (glutamate and aspartate) at positions 114 and 115 may provide a partial explanation for the poor enzyme kinetics in cross-reactions between the cytochromes c and cytochrome c oxidases of higher primates and other mammals. Correspondence to: R.L. Honeycutt  相似文献   

3.
An ensemble of structural models of the adduct between cytochrome c and cytochrome c oxidase from Paracoccus denitrificans has been calculated based on the experimental data from site-directed mutagenesis and NMR experiments that have accumulated over the last years of research on this system. The residues from each protein that are at the protein–protein interface have been identified by the above experimental work, and this information has been converted in a series of restraints explicitly used in calculations. It is found that a single static structural model cannot satisfy all experimental data simultaneously. Therefore, it is proposed that the adduct exists as a dynamic ensemble of different orientations in equilibrium, and may be represented by a combination or average of the various limiting conformations calculated here. The equilibrium involves both conformations that are competent for electron transfer and conformations that are not. Long-range recognition of the partners is driven by non-specific electrostatic interactions, while at shorter distances hydrophobic contacts tune the reciprocal orientation. Electron transfer from cytochrome bc 1 to cytochrome c oxidase is mediated through cytochrome c experiencing multiple encounters with both of its partners, only part of which are productive. The number of encounters, and thus the electron transfer rate, may be increased by the formation of a cytochrome bc 1–cytochrome c oxidase supercomplex and/or (in human) by increasing the concentration of the two enzymes in the membrane space. Protein Data Bank Accession numbers The coordinates of the five best structural models for each of the four clusters have been deposited in the Protein Data Bank (PDB ID 1ZYY).  相似文献   

4.
Mitochondrial DNA sequences are often used to construct molecular phylogenetic trees among closely related animals. In order to examine the usefulness of mtDNA sequences for deep-branch phylogenetics, genes in previously reported mtDNA sequences were analyzed among several animals that diverged 20–600 million years ago. Unambiguous alignment was achieved for stem-forming regions of mitochondrial tRNA genes by virtue of their conservative secondary structures. Sequences derived from stem parts of the mitochondrial tRNA genes appeared to accumulate much variation linearly for a long period of time: nearly 100 Myr for transition differences and more than 350 Myr for transversion differences. This characteristic could be attributed, in part, to the structural variability of mitochondrial tRNAs, which have fewer restrictions on their tertiary structure than do nonmitochondrial tRNAs. The tRNA sequence data served to reconstruct a well-established phylogeny of the animals with 100% bootstrap probabilities by both maximum parsimony and neighbor joining methods. By contrast, mitochondrial protein genes coding for cytochrome b and cytochrome oxidase subunit I did not reconstruct the established phylogeny or did so only weakly, although a variety of fractions of the protein gene sequences were subjected to tree-building. This discouraging phylogenetic performance of mitochondrial protein genes, especially with respect to branches originating over 300 Myr ago, was not simply due to high randomness in the data. It may have been due to the relative susceptibility of the protein genes to natural selection as compared with the stem parts of mitochondrial tRNA genes. On the basis of these results, it is proposed that mitochondrial tRNA genes may be useful in resolving deep branches in animal phylogenies with divergences that occurred some hundreds of Myr ago. For this purpose, we designed a set of primers with which mtDNA fragments encompassing clustered tRNA genes were successfully amplified from various vertebrates by the polymerase chain reaction.Abbreviations AA stem amino acid-acceptor stem - AC stem anticodon stem - COI cytochrome oxidase subunit I - cytb cytochrome b - D stem dihydrouridine stem - MP maximum parsimony - mtDNA mitochondrial DNA - Myr million years - NJ neighbor joining - PCR polymerase chain reaction - Ti transition - T stem tC stem - Tv transversion Correspondence to: Y. Kumazawa  相似文献   

5.
6.
In order to distinguish between the regulatory effects of oxygen tension and light intensity on cytochrome c oxidase protein and enzymatic activity cells of Rhodobacter capsulatus were shifted from phototrophic (anaerobic, light) growth to aerobic-light, aerobic-dark and to anaerobic-dark conditions, respectively. During shift-experiments the formation of oxidase protein and regulation of oxidase activity was followed by immunological and enzymatic means. The results support the idea, that the formation of oxidase protein is regulated by oxygen tension and light intensity changes, whereas the regulation of oxidase activity seems only to be correlated to the oxygen tension. A DNA sequence involved in the oxygen-dependent regulation of cytochrome oxidase could be identified in the regulation-deficient oxidase mutant H41 of R. capsulatus. Immunological investigations of cytochrome c 2 from mutant H41 demonstrated at the same time the participation of the c 2-polypeptide in the regulation of cytochrome c oxidase.Abbreviations Bchl bacteriochlorophyll - CIE crossed immuno-electrophoresis - DMSO dimethyl sulfoxide  相似文献   

7.
The structural features of cytochrome oxidases are reviewed in light of their evolution. The substrate specificity (quinol vs. cytochromec) is reflected in the presence of a unique copper centre (Cu A ) in cytochromec oxidases. In several lines of evolution, quinol oxidases have independently lost this copper. Also, the most primitive cytochromec oxidases do not contain this copper, and electron entry takes place viac-type haems. These enzymes, exemplified by the rhizobial FixN complex, probably remind the first oxidases. They are related to the denitrification enzyme nitric oxide reductase.  相似文献   

8.
Polymerase chain reaction (PCR) followed by sequencing of single-stranded DNA yielded sequence information from the cytochrome b (cyt b) region in mitochondrial DNA from the ant Tetraponera rufoniger. Compared with the cyt b genes from Apis mellifera, Drosophila melanogaster, and D. yakuba, the overall A + T content (A + T%) of that of T. rufoniger is lower (69.9% vs 80.7%, 74.2%, and 73.9%, respectively) than those of the other three. The codon usage in the cyt b gene of T. rufoniger is biased although not as much as in A. mellifera, D. melanogaster, and D. yakuba; T. rufoniger has eight unused codons whereas D. melanogaster, D. yakuba, and A. mellifera have 21, 20, and 23, respectively. The inferred cyt b polypeptide chain (PPC) of T. rufoniger has diverged at least as much from a common ancestor with D. yakuba as has that of A. mellifera (3.5 vs 2.9). Despite the lower A + T%, the relative frequencies of amino acids in the cyt b PPC of T. rufoniger are significantly (P < 0.05) associated with the content of adenine and thymine (A + T%) and size of codon families. The mitochondrially located cytochrome oxidase subunit 11 genes (CO-II) of endopterygote insects have significantly higher average A + T% (75%) than those of exopterygous (69%o) and paleopterous (69%) insects. The increase in A + T% of endopterygote insects occurred in Upper Carboniferous and coincided with a significant acceleration of PPC divergence. However, acceleration of PPC divergence is not significantly correlated with the increase of the A + T% (P > 0.1). The high A + T%, the biased codon usage, and the increased PPC divergence of Hymenoptera can in that respect most easily be explained by directional mutation pressure which began in the Upper Carboniferous and still occurs in most members of the order. Given the roughly identical A + T% of the cyt b and CO-II genes from the other insects whose DNA sequences are known (A. mellifera, D. melanogaster, and D. yakuba), it seems most likely that the A + T% of T. rufoniger declined secondarily within the last 100 Myr as a result of a reduced directional mutation pressure.Abbreviations Myr million years - mtDNA mitochondrial DNA - scnDNA single-copy nuclear DNA - A adenine - C cytosine - G guanine - T thymine - A + T% content of A and T - PPC polypeptide chain - cyt b cytochrome b - CO-I cytochrome oxidase sub-unit I - CO-II cytochrome oxidase subunit II - ND1 NADH dehydrogenase subunit 1 - ND6 NADH dehydrogenase subunit 6 - tRNA infUCN supSer ucN transfer RNA for serine with a UCN anticodon Correspondence to: L.S. Jermiin  相似文献   

9.
Summary We have sequenced the mitochondrial cytochrome b gene from the guinea pig, the African porcupine, and a South American opossum. A phylogenetic analysis, which includes 22 eutherian and four other vertebrate cytochrome b sequences, indicates that the guinea pig and the porcupine constitute a natural clade (Hystricomorpha) that is not a sister group to the clade of mice and rats (Myomorpha). Therefore, the hypothesis that the Rodentia is paraphyletic receives additional support. The artiodactyls, the perissodactyls, and the cetaceans form a group that is separated from the primates and the rodents. The 26 sequences are used to study the structure/function relationships in cytochrome b, whose function is electron transport. Most of the amino acid residues involved in the two reaction centers are well conserved in evolution. The four histidines that are believed to ligate the two hemes are invariant among the 26 sequences, but their nearby residues are not well conserved in evolution. The eight transmembrane domains represent some of the most divergent regions in the cytochrome b sequence. The rate of nonsynonymous substitution is considerably faster in the human and elephant lineages than in other eutherian lineages; the faster rate might be due to coevolution between cytochrome b and cytochrome c. Offprint requests to: W.-H. Li  相似文献   

10.
A cDNA encoding mitochondrial cytochrome c oxidase subunit I (mt COI) from Manduca sexta (Lepidoptera: Sphingidae) was cloned and sequenced. AT (adenine-thymine) content is high and codon usage is biased and likely reflects the role of mt COI in electron transport. The encoded protein is 514 amino acids long, contains seven invariant His residues observed in COIs in all organisms and would be predicted to be composed of 12 transmembrane regions.  相似文献   

11.
12.
Details of the phylogenetic relationships among tetrahymenine ciliates remain unresolved despite a rich history of investigation with nuclear gene sequences and other characters. We examined all available species of Tetrahymena and three other tetrahymenine ciliates, and inferred their phylogenetic relationships using nearly complete mitochondrial cytochrome c oxidase subunit 1 (cox1) and small subunit (SSU) rRNA gene sequences. The inferred phylogenies showed the genus Tetrahymena to be monophyletic. The three “classical” morphology-and-ecology-based groupings are paraphyletic. The SSUrRNA phylogeny confirmed the previously established australis and borealis groupings, and nine ribosets. However, these nine ribosets were not well supported. Using cox1 gene, the deduced phylogenies based on this gene revealed 12 well supported groupings, called coxisets, which mostly corresponded to the nine ribosets. This study demonstrated the utility of cox1 for resolving the recent phylogeny of Tetrahymena, whereas the SSU rRNA gene provided resolution of deeper phylogenetic relationships within the genus.  相似文献   

13.
The phylogenetic status of the infra order Pecora is controversial, even though it is supported by paleontological, morphological, and molecular evidence. We analyzed two mitochondrial genes (i.e., 16S rRNA and cytochrome b) to resolve the phylogenetic position of pecoran species, i.e., the Bovidae, Cervidae, and Moschidae endemic to the Indian subcontinent. We used phylogenetic analysis based on different algorithms, including neighbor joining, maximum parsimony, Bayesian inference, maximum likelihood, minimum evolution, median joining network, along with multidimensional scaling, and DNA word analysis. Our results established the basal position of Tragulidae and the monophyly of the infra order Pecora within the Suborder Ruminantia. Our results also demonstrated that Bovidae, Cervidae, and Moschidae are allied with the placement of musk deer as more closely related to bovids than to cervids. Molecular dating based on sequence analysis shows that the radiation of Pecora occurred during the early Oligocene and that the majority of the pecoran families radiated and dispersed rapidly during the Oligocene/Miocene transition.  相似文献   

14.
Cells lacking ataxia telangiectasia mutated (ATM) have impaired mitochondrial function. Furthermore, mammalian cells lacking ATM have increased levels of reactive oxygen species (ROS) as well as mitochondrial DNA (mtDNA) deletions in the region encoding for cytochrome c oxidase (COX). We hypothesized that ATM specifically influences COX activity in skeletal muscle. COX activity was ∼40% lower in tibialis anterior from ATM-deficient mice than for wild-type mice (P < 0.01, n = 9/group). However, there were no ATM-related differences in activity of succinate dehydrogenase, isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, mitochondrial glycerol 3-phosphate dehydrogenase, or complex III. Incubation of wild-type extensor digitorum longus muscles for 1 h with the ATM inhibitor KU55933 caused a ∼50% reduction (P < 0.05, n = 5/group) in COX activity compared to muscles incubated with vehicle alone. Among the control muscles and muscles treated with the ATM inhibitor, COX activity was correlated (r = 0.61, P < 0.05) with activity of glucose 6-phosphate dehydrogenase, a key determinant of antioxidant defense through production of NADPH. Overall, the findings suggest that ATM has a protective role for COX activity.  相似文献   

15.
Liza Douiev  Ann Saada 《BBA》2018,1859(9):893-900
Mitochondrial cytochrome c oxidase (COX, respiratory chain complex IV), contributes to ATP production via oxidative phosphorylation (OXPHOS). Clinical presentation of COX deficiency is heterogeneous ranging from mild to severe neuromuscular diseases. Anemia is among the symptoms and we have previously reported Fanconi anemia like features in COX4-1 deficiency, suggesting genomic instability and our preliminary results detected nuclear double stranded DNA breaks (DSB). We now quantified the DSB by phospho histone H2AX Ser139 staining of COX4-1 and COX6B1 deficient fibroblasts (225% and 215% of normal, respectively) and confirmed their occurrence by neutral comet assay. We further explored the mechanism of DNA damage by studying normal fibroblasts treated with micromolar concentrations of cyanide (KCN). Present results demonstrate elevated nuclear DSB in cells treated with 50?μM KCN for 24?h (170% of normal) in high-glucose medium conditions where ROS and ATP remain normal, although Glutathione content was partially decreased. In glucose-free and serum-free medium, where growth is hampered, DSB were not elevated. Additionally we demonstrate the benefit of nicotinamide riboside (NR) which ameliorated DSB in COX4-1, COX6B1 and KCN treated cells (130%, 154% and 87% of normal cells, respectively). Conversely a negative effect of a poly[ADP-ribose] polymerase (PARP) inhibitor was found. Although additional investigation is needed, our findings raise the possibility that the pathomechanism of COX deficiency and possibly also in other OXPHOS defects, include nuclear DNA damage resulting from nicotinamide adenine dinucleotide (NAD+) deficit combined with a replicative state, rather than oxidative stress and energy depletion.  相似文献   

16.
Two synthetic genes coding for human and Arabidopsis cytochrome c, respectively, have been designed and constructed, and the recombinant proteins have been over-expressed in Escherichia coli cells. Thus a comparative analysis of the two heme proteins, including horse cytochrome c as a reference, has been performed. In addition to their physico-chemical properties, the redox behavior of the three proteins has been analyzed by following the kinetics of both their reduction by flavin semiquinones (lumiflavin, riboflavin, and FMN) and oxidation by cytochrome c oxidase. The resulting data indicate that the accessibility and electrostatic charge of the active site do not differ in a significant way among the three proteins, but human cytochrome c exhibits some intriguing differences when interacting with cytochrome c oxidase that could be related to the amino acid changes underwent by the latter along evolution.  相似文献   

17.
Xavier AV 《FEBS letters》2002,532(3):261-266
Cytochrome c3 has a central role in the energetics of Desulfovibrio sp., where it performs an electroprotonic energy transduction step. This process uses a network of cooperativities, largely based on anti-Coulomb components, resulting from a mechano-chemical energy coupling mechanism. This mechanism provides a model coherent with the data available for the redox chemistry of haem a of cytochrome c oxidase and its link to the activation of protons. A crucial feature of the model is an anti-Coulomb effect that sets the stage for a molecular ratchet, ensuring vectoriality for the redox-driven localised movement of protons across the membrane, against an electrochemical gradient.  相似文献   

18.
DNA sequence comparisons of three mitochondrial DNA genes were used to reveal phylogenetic relationships among four species and a sub-species of Mullidae family. This is the first report using mitochondrial DNA sequence data to infer intraspecific relationship among different populations of Mullus barbatus and Mullus surmuletus; phylogenetic relationships between M. barbatus and its sub-species; M. barbatus ponticus. Cytochrome b, 12S ribosomal RNA, and cytochrome oxidase II regions of 242 individuals belonging to species M. barbatus, M. surmuletus, Upeneus moluccensis, Upeneus pori and sub-species M. barbatus ponticus were sequenced and phylogenetic trees were constructed using four different algorithms. The phylogenetic trees constructed support the existing taxonomical data of two mullid genera (Mullus, Upeneus). Molecular data shows no significant difference between same species of different geographical populations. The results suggest that the molecular difference is not large enough between M. barbatus and M. barbatus ponticus to consider them as sub-species.  相似文献   

19.
The mitochondrial cytochrome oxidase II (Co II) from four different apterygotens Cryptopygus nanjiensis (Collembola), Neanura latior (Collembola), Gracilentulus maijiawensis (Protura) and Lepidocampa weberi (Diplura) were sequenced. Their A T content, number of nucleotide substitutions, TV/TV ratio, and Tamura-Nei's distance were calculated. A series of phylogenetic trees were constructed by parsimony and distance methods using a crustacean Artemia franciscana as outgroup. Finally the evolutionary trend A T content of CO II genetic divergence and phylogenetic relationship of apterygotan groups were discussed.  相似文献   

20.
从细胞色素b基因序列探讨笛鲷属的分子系统发生关系   总被引:3,自引:0,他引:3  
测定了9种中国南海的笛鲷属鱼类的细胞色素b基因的部分序列,结合来自GenBank中1种分布于菲律宾和9种分布于美国大西洋的笛鲷属鱼类的相应同源序列,用邻接法和最大简约法构建分子系统树。结果显示:红鳍笛鲷(Lutjanuserythropterus)与红笛鲷(L.sanguineus)之间的同源序列碱基差异百分率只有0.32%,支持二者是同种异名的观点;中国南海的笛鲷属鱼类间的平均碱基差异要高于美国大西洋笛鲷属鱼类。在MP和NJ树中,美国大西洋笛鲷表现为亲缘关系较近,来源于中国南海的笛鲷鱼类相对集中在树的基部,分歧较大。这与所研究的笛鲷地理分布和地理隔离基本相一致,同时也说明中国南海笛鲷分化较早并且分歧较大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号