首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The stomach of Oreochromis niloticus has three regions   总被引:6,自引:0,他引:6  
The stomach of Oreochromis niloticus was divided into three distinct regions: initial, middle and terminal, corresponding roughly to the cardiac, fundic, and pyloric portions of the mammalian stomach. Grossly, the organ showed initial and terminal portions, the former connected to the distal part of the oesophagus and the latter to the proximal portion of the intestine. There was also a middle region, forming a large blind diverticulum communicating with the first two at their point of junction. The initial or cardiac region was shorter than the middle region but longer than the terminal one, and had a smooth surface devoid of gastric pits. The epithelium in this region was simple columnar devoid of goblet cells, with glandular regions in the lamina propria. The mucosa of the middle or fundic region had gastric pits lined by columnar epithelium, and simple tubular glands filled most of the lamina propria. The terminal or pyloric part of the stomach was very short and its mucosa was slightly folded and devoid of both gastric pits and mucous glandular cells. The lining epithelium of this portion of the stomach was simple columnar and a few goblet cells were seen at its junction with the first part of the intestine. The tunica muscularis of the stomach contained skeletal muscle in the initial and terminal regions, usually intermingled with smooth muscle fibres. Skeletal muscle fibres were also observed in the first portion of the small intestine, near the junction with the stomach.  相似文献   

2.
The histology of the digestive tract of the amberjack ( Seriola dumerili , Risso) was studied using light and scanning electron microscopy. The anterior oesophagus mucosa displays primary and secondary folds lined with a stratified squamous epithelium with fingerprint-like microridges which is substituted, on the top of the oesogaster folds, by a simple columnar epithelium with short microvilli. Only primary folds are present in the stomach. The anterior portion is rich in simple tubular glands, whereas the oesogaster and the pyloric region are devoid of them. Pyloric caeca and anterior and middle intestine mucosa display the same pattern of folding. The dominant cell type is the enterocyte, which exhibits larger and thinner microvilli in the caeca than in the intestine. The columnar epithelium of the rectum is replaced, in the anal sphincter, by a stratified flattened epithelium. Goblet cells are numerous throughout the whole length of the tract with the exception of the initial part of the oesophagus, the oesogaster, the stomach and the anal sphincter. Mucosubstances have been shown to vary in the different regions of the gut: acid mucines are found in the oesophagus, pyloric stomach, caeca, intestine and rectum, whereas neutral mucosubstances dominate in the anterior portion of the stomach. The muscularis is well developed throughout the length of the tract: two layers of striated muscle at the oesophageal level; two layers of smooth muscle in the stomach wall and three at the intestinal level.  相似文献   

3.
The histological characteristics of the digestive tract and the ultrastructure of mucosal cells of the stomach and intestine of rice field eel, Monopterus albus, are described to provide a basis for future studies on its digestive physiology. The digestive tract of the rice field eel is a long and coiled tube composed of four layers: mucosa, lamina propria‐submucosa, muscularis and serosa. The pharynx and oesophagus mucosa is lined with a stratified epithelium. The stomach includes the cardiac and pyloric portions and the fundus. Many gastric pits are formed by invaginations of the mucosal layer and tubular gastric glands formed by the columnar cells in the fundus. The intestine is separated from the stomach by a loop valve and divided into a proximal portion and a distal portion. The proximal intestinal epithelium consists of columnar cells with microvilli towards the lumen and goblet cells. The enterocytes are joined at the apical surface by the junctional complex, including the evident desmosomas. Numerous lysosomes and some vesicles are evident in the upper cytoplasm of the cells, and a moderate amount of endoplasmic reticulum and lysosomes are scattered in the supranuclear cytoplasm. The epithelium becomes progressively thicker and the folds containing large numbers of goblet cells are fewer and shorter in the distal portion of the intestine. At the ultrastuctural level, the columnar cells of the tubular gastric glands have numerous clear vacuoles and channels. A moderate amount of pepsinogen granules are present in the stomach. The enterocytes of the intestinal mucosa display a moderate amount of endoplasmic reticulum and lysosomes, and long and regular microvilli.  相似文献   

4.
The anatomy and the histology of the digestive tract of young and adult sea-bream is described from studies using light and scanning electron microscopy. The dentition in the juvenile (25–30 mm long) comprises all canine-like teeth, to which plate teeth and transition elements are added in the adult.
The oesophagus shows a multi-layered mucosa in the upper part, and single-layered regions in the lower part. The multi-layered regions are formed by epithelial cells, mucus-secreting cells and by cells rich with eosinophilic granules.
The Y-shaped stomach, clearly distinguishable, has a single-layered columnar epithelium under which, in the cardiac and fundic portion, gastric glands, comprised of all similar cells, are present. The pyloric region is characterized by four caeca, to the base of which the ductus pancreaticus and the ductus hepaticus discharge.
The pancreas is composed of small masses spread along the upper intestine; in the adult, pancreatic infiltrations can be seen in the liver.
The intestine is short (relative length 0.5–0.6). The intestine epithelium consists of columnar cells intercalated with mucus-secreting cells. A funnel-like valve marks the passage to the intestine terminal region, characterized by a mucosa of cells with an abundance of vacuoles full of eosinophilic granules.  相似文献   

5.
Xiong, D., Zhang, L., Yu, H., Xie, C., Kong, Y., Zeng, Y., Huo, B. and Liu, Z. 2011. A study of morphology and histology of the alimentary tract of Glyptosternum maculatum (Sisoridae, Siluriformes). —Acta Zoologica (Stockholm) 92 : 161–169. The structure of alimentary tract has been studied in a cold water fish Glyptosternum maculatum, an endemic teleost species of notable economic importance and with high potential for controlled rearing of the species in Tibet, by light and electron microscope. Glyptosternum maculatum has short oesophagus, large caecal‐type stomach and short intestine, and the digestive tract with four layers: mucosa, submucosa, muscularis and serosa. Taste buds were found in the epithelium of lips, buccopharynx and oesophagus. The stratified epithelium of buccopharynx and oesophagus was located with numerous goblet cells. The U‐shaped stomach has three parts, corresponding to mammalian cardiac, fundus and pyloric portion, lined with a single‐layered columnar epithelium, and tubular gastric glands are present in cardiac and fundic portion, but absent in pyloric portion. No pyloric caeca was detected. The intestine is separated from the stomach by a loop valve. The intestine epithelium is composed of simple columnar cells with a distinct microvillus brush border and many goblet cells. Meanwhile, the intestinal coefficient was 0.898. At the ultrastuctural level, three type cells (mucous, glandular and endocrine cell) were found in the stomach, and glandular cell with a great amount of pepsinogen granules. The enterocytes of the intestinal mucosa display abundant endoplasmic reticulum, mitochondria and well‐developed microvilli. Congxin Xie, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China. E‐mail: xiecongxin@mail.hzau.edu.cn or dreamsail_2005@yahoo.com.cn  相似文献   

6.
Little is known about the digestive tube (DT) morphology of the fish Pterodoras granulosus. Therefore, macro‐, meso‐ and microscopic aspects of 15 P. granulosus DTs were analysed. The muscular layer was composed of striated skeletal muscle in the oesophagus and smooth muscle in the other segments. The epithelium progressed from a stratified pavement in the oesophagus to a simple column in the other segments, with a flat striated border in the intestine. A large number of mucus‐secreting periodic acid‐Schiff (PAS)‐positive cells were observed in the oesophagus. In the stomach, the number of glands in the region decreased towards the cardiac–fundic region, and none were found in the pylorus. The intestine showed an epithelium with absorption cells and an increasing number of PAS‐positive caliciform cells towards the distal region. Tests showed that the oesophagus is adapted for passing and preparing food for the chemical digestion that occurs in the stomach, which also has storage functions without grinding action. The proximal intestinal region was consistent with fat absorption, and the medium region, with the absorption of other nutrients. The distal region was short and consistent with a role in absorption for osmoregulation as well as in the formation, storage and disposal of faeces.  相似文献   

7.
《Tissue & cell》2016,48(6):624-633
Surface architecture of the buccal cavity and the surface organization of the luminal mucosa of the oesophagus, stomach, and intestine of the carnivorous fish M. flavolineatus from the Red Sea were studied by using SEM. The results revealed that M. flavolineatus has four kinds of teeth; curved-blunt, wedge-shaped, flattened crowns, molariform and papilliform. Three types of taste buds (type I, II and III) were recorded in the oropharyngeal cavity. It was observed that taste buds and teeth are co-located in the pharyngeal region. Characteristic patterns of microridges of the surface cells in the oral cavity and oesophagus were observed. Mucous cells are distributed in the lining of the mouth cavity, oesophagus, stomach, and intestine. Characteristic patterns of mucosal folds throughout the alimentary canal, concerning oesophagus, stomach, and intestine were revealed. Numerous gastric pits, which represents the emergence of the gastric glands, were recorded in the anterior and middle regions of the stomach. Complex patterns of the folds and mucous cells were recorded in the intestinal mucosa. These results were discussed with other teleost fishes.  相似文献   

8.
An anatomical study of the digestive tract of the channel catfish revealed that the oesophageal mucosa was longitudinally folded and that secondary folds were occasionally located on the primary longitudinal folds. The infoldings were more numerous near the stomach. The stratified squamous epithelium covering the folds was made up of a basal layer, large mucous cells and simple squamous cells on the surface. The epithelium on the side of the folds consisted primarily of mucous secreting cells. Taste buds were observed between mucous cells on the apical portion of the oesophageal folds and were more prevalent in the cranial part of the oesophagus. The remaining layers of the oesophagus were: a lamina propria-submucosa, tunica muscularis and adventitia or serosa.
The J-shaped stomach had two regions: a large sac-shaped region containing gastric glands and a smaller, nonglandular pyloric region. The large rugae of the stomach became gradually smaller near the pylorus. There was a well developed pyloric sphincter. The mucosa included a simple columnar epithelium, a lamina propria and adventitia or serosa.
The intestine could be differentiated into a thick ascending segment, a descending segment, a thin convoluted segment and a thicker terminal segment, the rectum. Many mucosal folds containing branched villi characterized the ascending segment of the intestine. The descending and convoluted segments contained fewer folds with shorter and less-branching villi and were smaller in diameter and thinner walled. Descending and convoluted segments were also mildly convoluted and accounted for 80% of the total length of the intestine. An intestinal valve with a sphincter marked the beginning of the rectum. There was an approximately four-fold increase in the thickness of the tunica muscularis of the terminal segment of the intestine.  相似文献   

9.
应用石蜡常规切片、HE染色,对马铁菊头蝠消化系统各器官的组织结构进行了观察.结果 表明:食管粘膜上皮为复层扁平上皮,轻微角质化,前、中、后段的上皮结构没有显著差异,食管腺在前段较多,中、后段较少.胃固有层含有大量的管状腺.小肠粘膜表面有许多环形皱襞,在十二指肠上段粘膜下层分布有十二指肠腺.大肠粘膜表面光滑,无绒毛,在粘膜下层的结缔组织中有小动脉、静脉和淋巴管.肝内结缔组织多,肝小叶分界较明显,肝血窦发达.胰的小叶间分界不明显.  相似文献   

10.
Gastric and cranial duodenal structure of the bowhead whale (Balaena mysticetus) was examined grossly and microscopically. The stomach was arranged in a series of four compartments. The first chamber, or forestomach, was a large nonglandular sac lined by a keratinized stratified squamous epithelium. It was followed by the fundic chamber, a large, somewhat globular and entirely glandular compartment. At the entrance of the fundic chamber, a narrow cardiac gland region could be defined. The remaining mucosa of the chamber contained the proper gastric glands. A narrow, tubular connecting channel, the third distinct gastric division, was lined by mucous glands and joined the fundic chamber with the final stomach compartment, or pyloric chamber. This fourth chamber was also tubular and lined by mucous glands but was of a diameter considerably larger than the connecting channel. The stomach terminated at the pyloric sphincter which consisted of a well-developed band of circular smooth-muscle bundles effecting a division between the pyloric chamber and small intestine. The small intestine began with the duodenal ampulla, a dilated sac considerably smaller than the fundic chamber of the stomach. The mucosa of this sac contained mucous glands throughout. The ampulla led without a separating sphincter into the duodenum proper which continued the intestine in a much more narrow tubular fashion. The mucosal lining of the duodenum was composed of villi and intestinal crypts. Although their occurrence varied among whales, enteroendocrine cells were identified within the mucous glands of the cardiac region, connecting channel, pyloric chamber, and cranial duodenum. The hepatopancreatic duct entered the wall of the duodenum shortly after the termination of the duodenal ampulla and continued intramurally along the intestine before finally joining the duodenal lumen.  相似文献   

11.
The histological development and mucous histochemistry of the alimentary tract in larval yellowtail flounder were studied using light microscopy. Samples were taken when the larvae were first offered food at 3 days post-hatch, then at 7, 10, 29, 36, and 46 days post-hatch, at which time they were metamorphosing. Regional partitioning of the digestive tract into the buccal cavity, pharynx, oesophagus, post-oesophageal swelling (PES), intestine, and rectum was complete by day 10. Goblet cells were present only in the buccal cavity, pharynx and intestine by day 7, but increased in number and distribution as development continued. By day 29, the posterior zone of the oesophagus had a marked increase in goblet cell density and mucosal folding. At the transition from oesophagus to PES/stomach stratified epithelium with goblet cells changed abruptly to a columnar epithelium with no goblet cells. Multicellular glands in the PES of 36-day larvae allowed it to be defined as a stomach. The distinct brush border of columnar epithelium and the presence of goblet cells characterize the intestine and rectum. All goblet cells throughout the digestive tract were strongly positive for acid mucins as was the luminal layer of the stratified epithelia lining the buccal cavity, pharynx and oesophagus. The PES/stomach epithelium stained weakly for neutral mucins. No mucin staining was associated with the gastric glandular epithelium. The brush borders of the intestine and rectum were strongly positive for combinations of neutral and acid mucins.  相似文献   

12.
The anatomical arrangement of the digestive tract and the length (cm) of the oesophagus and intestine of the catfish Lophiosilurus alexandri were described, and the intestinal coefficient was determined. L. alexandri oesophagus is short, in median position, and presents longitudinally folded mucosa, whilst its epithelium is stratified and non-keratinised, with mucous, claviform and epithelial cells. Stomach has “C” shape, with folded mucosa along cardiac region, disordered in the fundic region, and directed to the sphincter in the pyloric region. Its epithelium is simple prismatic, and cardiac and fundic portions have gastric glands. Cranial intestine is formed by pyloric flexure and descending loop attached to the right side of stomach. Middle intestine is winding and positioned to the right of caudal portion of stomach. Caudal intestine is linear and with a median position up to the anus. Intestinal coefficient was 1.39 ± 0.30 cm. Epithelium is simple prismatic with brush border and contains epithelial and goblet cells. Caudal region has highest concentration of goblet cells. Were detected neutral glycoproteins, carboxylated and sulphated acid glycoconjugates for mucous cells and goblet cells, and neutral glycoproteins for the apical region of gastric epithelial cells. Morphological features could be related to piscivorous species feeding habit.  相似文献   

13.
The alimentary canal of laboratory-reared common wolffish (Anarhichas lupus L.) was studied using light and electron microscopy. In the oesophagus, a simple columnar microvillous epithelium with transport characteristics was observed in addition to the main striated squamous epithelium. An osmoregulatory function is proposed for the simple columnar epithelium, which was supported by wide, thin-walled vessels. In the stomach, a separate type of neck cells was observed leading into the acinar gastric glands, which morphologically consist of one cell type: chief cells. The intestine was divided into a proximal and distal segment by an intestinal valve. Pyloric caeca were not present. We propose that shallow, crypt-like structures in the intestinal mucosa are the sites of epithelial-cell proliferation in juveniles and adults. The length of microvilli decreased from approximately 4 μm in the cranial part of the proximal intestine, to 1.5 μm in the distal intestine. In the distal intestine, rod-shaped bacteria were observed between microvilli. An extensive system of thin-walled vessels was observed in the submucosa of juvenile and adult wolffish stomach and intestine. Eosinophilic granular cells were numerous in the perivascular connective tissue in the gastric and intestinal submucosa of adults and juveniles, but were not observed in larvae.  相似文献   

14.
The digestive system of teleost shows remarkable functional and morphological diversity. In this study, the digestive tract and accessory organs of dourado Salminus brasiliensis are characterized using anatomical, histological, histochemical and immunohistochemical analyses. The existence of taste buds bordered by microridges in the oesophagus of dourado was recorded for the first time, thus showing that the species drives food intake by either swallowing or rejecting the food item. The Y-shaped stomach of dourado consisted of cardiac, cecal and pyloric regions with tubular gastric glands registered solely in the cardiac and cecal segments. The intestine is a short N-shaped tube with two loops, an intestinal coefficient of 0.73. The structure of pyloric caeca is similar to that of the intestine wall, comprising tunica mucosa, tela submucosa, tunica muscularis and tunica serosa layers. Histochemical analyses revealed an increased incidence of goblet cells from the midgut to the hindgut segment. A well-developed enteric plexus of scattered nerve cell and fibres are found along the digestive tract, and the calcitonin gene-related peptide (CGRP) immunoreactive neurons and fibres were identified in the myenteric plexus from the oesophagus to the hindgut. The exocrine pancreas appears diffuse in the mesentery around the stomach, intestine and also reaches the liver, and the endocrine pancreas is organized as a few islets of Langerhans. The liver comprises three distinct, asymmetric lobes, and the portal triad arrangement was registered in this tissue.  相似文献   

15.
The morphology of the gastrointestinal tract (GI) is a strong indicator of the dietary habits of a species. The goal of this study was to describe the gross and microanatomy of the digestive tract of the neo-tropical opossum (Didelphis marsupialis insularis) and relate them to the animals’ food habits. GI tracts from 12 adult animals were used for this study. Results found the small intestine made up 65.9% of the GI tract, and the stomach was simple with a prominent caecum. Histologically, the oesophageal mucosa was non-keratinized and glands were found throughout the oesophagus. The large intestine showed a great number of goblet cells, the jejunum possessed well-developed villi, and Peyer's patches were absent in the ileum. The absence of keratinization of the epithelial lining of the oesophagus and stomach and a high lymphocytic infiltration throughout the small and large intestine reflected a more carnivorous diet, whereas the presence of a well-developed caecum in the large intestine indicated the ability to digest plant matter. Overall, the morphology of GI tract of D. m. insularis displayed both carnivorous and herbivorous features, allowing us to conclude that it is an omnivorous animal.  相似文献   

16.
Electron-microscopic examinations of the sturgeon gut were performed. Oesophageal goblet cells were abundant in the stratified epithelium. The ultrastructural features of the secretory granules of the oesophageal and intestinal goblet cells were quite similar to those of other vertebrates. Lobules of multilocular adipose tissue were observed in the deep tunica propriasubmucosa of the oesophagus, in close association with vasculature and large fibre bundles of myelinated and unmyelinated axons. Similarly composed nerve fibre bundles were observed in the cardiac stomach, too. The presence of myelinated axons is an unusual feature in the vertebrate enteric nervous system. Cardiac and fundic zones of the stomach showed an epithelium with columnar ciliated and non-ciliated cells, the latter equipped with fuzzy microvilli. Cells lining the tubular gastric proper glands were markedly granulated. Intestinal superficial epithelium was columnar and contained ciliated, as well as non-ciliated and goblet cells. In the tunica propria all over the intestine, the presence and ultrastructure of granulated cells was in addition described. Intraepithelial granulated leukocytes were seen throughout the alimentary canal. Various types of endocrine cells were seen both in the stomach and in the intestine, the size of their granules was measured and their ultrastructure described and compared to that of mammalian cell types.  相似文献   

17.
The morphology and histology of the alimentary canal of the rock chiton Acanthopleura spinigera are described and the ability of regions of the gut to digest specific substrates investigated. The oesophagus is produced into a pair of thin-walled lateral pouches, the salivary glands or "sugar glands" which empty into the stomach. Folds of the capacious stomach are almost obscured by the large digestive gland over which is coiled the intestine. Histologically the gut consists of an outer layer of connective tissue, an inner muscular layer and a ciliated epithelium which varies in thickness from one region to the next. Proteases are most active in the stomach, digestive gland and anterior intestine at pH 6·5 and in the posterior intestine at pH 7·5-8·5. The digestion of lipoidal substance was greatest in the stomach and digestive gland and least in anterior intestine. There was little increase in the amount of digestion product obtained after 20 hours incubation. All regions of the alimentary canal and salivary gland were capable of digesting carbohydrates except that many low molecular weight carbohydrates were digested by salivary gland extracts only. The amylases were most active at pH 6–6·5. It is concluded that digestive enzymes are distributed throughout the intestinal tract but the amount of enzyme present varies from region to region, and is greatest just after feeding.  相似文献   

18.
The gut of adult sturgeon was examined. The oesophageal mucosa contained numerous caliciform cells, synthesizing both neutral and acidic glycoconjugates, the latter of the sialylated type. The deep tunica propria-submucosa contained lobules of multilocular adipose tissue, specially abundant during the cold season. The oesophageal tunica muscularis was made up of a large sheath of striated muscle fibres, arranged orthogonally to a thin, subserous smooth muscle layer. The siphon-shaped stomach showed a ciliated epithelium in cardiac and gastric proper gland zones, where tubular glands were present in the tunica propria. The columnar cells which composed the superficial epithelium and gastric pits were demonstrated to synthesize almost exclusively neutral glycoconjugates. Appendices pyloricae constituted a glandular body equipped with intestinal mucosa. The intestinal mucosa was organized in folds, containing numerous caliciform cells which synthesized neutral or acidic glycoconjugates, the latter either of the sialylated and sulphated type. The sulphoglycoconjugates were more abundant in the caliciform cells of the distal intestinal tracts. The tunica propria-submucosa of the spiral valve (medium intestine) contained lymphatic tissue and large lymphatic follicles. A muscularis mucosae was present only in the rectum, where in addition a peculiar granular cell type was present in the superficial tunica propria-submucosa, possibly related to defensive properties. The subserous connective tissue contained pancreatic lobules all along the stomach and intestine. The enteric nervous system showed some special aspects, the most intriguing of which was the presence of large, longitudinally oriented nerve bundles in the t. propria-submucosa of oesophagus and cardiac stomach. The nerve bundles contained, near unmyelinated nerves, some myelinated nerves, as well as neuronal bodies. Both these aspects are exceptional in vertebrates and obscure in their significance. The structural and histochemical aspects we here describe are in part different from those described for other fish. Some of these special features are possibly related with special functional roles, others require a deeper insight and different approaches to clarify them functionally.  相似文献   

19.
The topological characteristics of the entire gut surface of the rainbow trout were investigated utilizing the scanning electron microscope. The mucosa exhibited longitudinal ridges in the oesophagus and stomach, villi in the intestine, fine longitudinal ridges in the caeca and annular folds in the rectum, arranged as a stack of caudally-directed funnels starting from the intestino-rectal valve to the vent. Detailed study revealed taste pores in the anterior oesophagus and the sculpting of the luminal plasmalemma of the surface cells into micro-ridges with complicated patterns. The surfaces of the posterior oesophagus and stomach were demarcated into polygons by rows of stubby microvilli—each polygon representing the luminal surface of an epithelial cell. Each rectal fold consisted of a smooth, caudally-directed apex and a base which was supported by perpendicular buttress-like secondary folds. The functional significance of these features which emphasize the vast difference in the physical length of the gut and the effective surface area is discussed.  相似文献   

20.
Muriel  Pilgrim 《Journal of Zoology》1965,147(4):387-405
The alimentary canal of the maldanid polychaetes Clymenella torquata (Leidy), and Euclymene oerstedi (Claparède (= Caesicirrus neglectus Arwidsson, 1911) resembles, in many ways, that of the arenicolids. It is divided into buccal mass, pharynx, oesophagus, stomach and intestine, the three latter regions showing further subdivision. The buccal mass and anterior pharynx together form an eversible proboscis. The pharynx, oesophagus, and greater part of the intestine are ciliated. Simple feeding experiments, and histochemical tests, suggest that the stomach is concerned with the digestion and absorption of proteins, fats and carbohydrates, that the anterior intestine is a digestive and major absorptive region, and that the posterior intestine is a storage region. Waste materials are stored mainly in the wall of the oesophagus. A certain amount of intracellular digestion is carried out in the intestine of Euclymene but not in Clymenella. The difference is attributed to the richer, diatomaceous diet of Clymenella. British individuals of this species, being apparently selective feeders, differ not only from Euclymene but also from American ones, both of which ingest the substratum non-selectively.
The pharynx, oesophagus and rectum are surrounded by plexuses of blood capillaries, while the remaining regions are associated with a blood sinus system which varies in position and form in the different regions, lying deepest in the absorptive intestine. The gut muscle seems to be more concerned with moving the blood forward through the sinus system and into the anterior plexus than with moving the food backward. One region of the stomach musculature is especially concerned with this circulation. Rectal respiration probably occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号