首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Summary Coconut (Cocos nucifera L.) plantlets grown in vitro often grow slowly when transferred to the field possibly, due to a limited photosynthetic capacity of in vitro-cultured plantlets, apparently caused by the sucrose added to growth medium causing negative feedback for photosynthesis. In this paper, we tested the hypothesis that high exogenous sucrose will decrease ribulose 1,5-bisphosphate carboxylase (Rubisco) activity and photosynthesis resulting in limited ex vitro growth. Plantlets grown with high exogenous sucrose (90 gl−1) had reduced photosynthetic activity that resulted in a poor photosynthetic response to high levels of light and CO2. These plantlets also had low amounts of Rubisco protein, low Rubisco activity, and reduced growth despite showing high survival when transferred to the field. Decreasing the medium’s sucrose concentration from 90 to 22.5 gl−1 or 0 gl−1 resulted in increased photosynthetic response to light and CO2 along with increased Rubisco and phosphoenolpyruvate carboxylase (PEPC) activities and proteins. However, plantlets grown in vitro without exogenous sucrose died when transferred ex vitro, whereas those grown with intermediate exogenous sucrose showed intermediate photosynthetic response, high survival, fast growth, and ex vitro photosynthesis. Thus, exogenous sucrose at moderate concentration decreased photosynthesis but increased survival, suggesting that both in vitro photosynthesis and exogenous sucrose reserves contribute to field establisment and growth of coconut plantlets cultured in vitro.  相似文献   

3.
Heat caused reduction in membrane protein thiol content, increased accumulation of thiobarbituric acid reactive substances and reduced germination rate and early growth in germinating Amaranthus lividus seeds. Imposition of heat stress during early germination also causes accumulation of reactive oxygen species like superoxide and hydrogen peroxide while activities of antioxidative enzymes catalase, ascorbate peroxidase, and glutathione reductase decreased. Calcium chelator (EGTA), calcium channel blocker (LaCl3) and calmodulin inhibitor (trifluroperazine) aggravated these effects. Added calcium reversed the effect of heat, implying that protection against heat induced oxidative damage and improvement of germination requires calcium and calmodulin during the recovery phase of post-germination events in Amaranthus lividus.  相似文献   

4.
In this article, the effects of increased light intensities on antioxidant metabolism during ex vitro establishment of Ulmus minor micropropagated plants are investigated. Three month old in vitro plants were acclimatized to ex vitro conditions in a climate chamber with two different light intensities, 200 μmol m−2 s−1 (high light, HL) and 100 μmol m−2 s−1 (low light, LL) during 40 days. Immediately after ex vitro transfer, the increase of both malondialdehyde (MDA) and electrolyte leakage in persistent leaves is indicative of oxidative stress. As the acclimatization continues, an upregulation of the superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GR) enzyme activities were also observed. Simultaneously, MDA content and membrane permeability stabilized, suggesting that the antioxidant enzymes decrease the deleterious effects of reactive oxygen species (ROS) generation. Unexpectedly, newly formed leaves presented a different pattern of antioxidative profile, with high levels of MDA and membrane leakage and low antioxidant enzyme activity. Despite these differences, both leaf types looked healthy (e.g. greenish, with no necrotic spots) during the whole acclimatization period. The results indicate that micropropagated U. minor plantlets develop an antioxidant enzyme system after ex vitro transfer and that, in general, LL treatment leads to lower oxidative stress. Moreover, new leaves tolerate higher levels of ROS without the need to activate the antioxidative pathway, which suggests that the environment at which leaves are exposed during its formation determinate their ability to tolerate ROS.  相似文献   

5.
The physiological responses to NaCl salinity were investigated in two floating aquatic macrophytes, Pistia stratiotes L. and Salvinia molesta L. With the increasing NaCl concentration a decrease in chlorophyll and carotenoid contents was recorded in Salvinia as compared to Pistia. Also a greater increase in H2O2 accumulation and lipid peroxidation was observed in the shoot and root tissues of Salvinia as compared to Pistia. The superoxide dismutase, glutathione reductase, catalase and guaiacol peroxidase activities, and ascorbate and glutathione contents increased in Salvinia and Pistia shoot and root tissues in response to NaCl.  相似文献   

6.
Plantlets of coconut were cultured in vitro under three different ambient conditions including a standard culture room, a culture room inside a glasshouse with natural light but controlled temperature, and a standard glasshouse with natural light and natural fluctuations of temperature. Plantlets from the 3 treatments were compared in terms of growth, plant survival as well as net photosynthesis and efficiency of PSII (Fv/Fm ratio) both at the end of the in vitro stage and at 3 stages of ex vitro acclimatization. At the end of the in vitro stage, plantlets cultured in vitro under glasshouse conditions showed the best performance showing the highest photosynthesis rate, dry weight and number of leaves. Plantlets from the standard culture room showed the lowest photosynthesis and growth rate. After 6 months of ex vitro acclimatization, plantlets originally grown in vitro under glasshouse conditions maintained better field survival and growth rates in terms of fresh weight, dry weight and leaf number than plantlets originally grown in vitro in the standard culture room. Although more studies are required to define the reason for this effect, it is clear that the conditions of standard culture rooms are not the best for in vitro cultivation of coconut and perhaps other tropical species.  相似文献   

7.
Effects of exogenous salicylic acid (SA) on plant growth, contents of Na, K, Ca and Mg, activities of superoxide dismutase (SOD), guaiacol peroxidase (GPX), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR) and catalase (CAT), and contents of ascorbate and glutathione were investigated in tomato (Lycopersicon esculentum L.) plants treated with 100 mM NaCl. NaCl treatment significantly increased H2O2 content and lipid peroxidation indicated by accumulation of thiobarbituric acid reactive substances (TBARS). A foliar spray of 1 mM SA significantly decreased lipid peroxidation caused by NaCl and improved the plant growth. This alleviation of NaCl toxicity by SA was related to decreases in Na contents, increases in K and Mg contents in shoots and roots, and increases in the activities of SOD, CAT, GPX and DHAR and the contents of ascorbate and glutathione.  相似文献   

8.
Tobacco (Nicotiana tabacum L.) plantlets were grown on Murashige and Skoog medium in ventilated Magenta boxes and for the last subculture 10 μM ABA was added to the medium. After three weeks plantlets were transferred into pots with Perlite moistened with water and grown in controlled conditions (16-h photoperiod, day/night temperature 25/20 °C, air humidity about 45 %) either under low or high irradiance of 150 (LI) and 700 (HI) μmol m−2 s−1, respectively. Content of endogenous ABA was 271.7 pmol g−1(f.m.) in ABA treated plantlets, while in control plantlets it was only 53.3 pmol g−1(f.m.). After ex vitro transfer, stomatal conductance and transpiration rate decreased considerably in comparison with in vitro grown plantlets and remained lower also 7 d after ex vitro transfer, especially in ABA-treated plants and so wilting of plants was practically eliminated. Net photosynthetic rate also decreased 1 d after ex vitro transfer but after 7 d it was mostly higher than that of in vitro grown plantlets. Water use efficiency significantly increased in ABA-treated plants. Chlorophyll a+b content did not change immediately after ex vitro transfer, nevertheless, after 7 d chlorophyll content was higher in ABA-treated plants. Pool of xanthophyll cycle pigments (XCP) and the degree of their deepoxidation (DEPS), which are connected with harmless dissipation of light energy, increased under high irradiance. Contents of XCP and ABA precursors (neoxanthin and violaxanthin) were lower in ABA-treated plants than in control plants indicating less stress in these plants. Most chlorophyll a fluorescence parameters did not change considerably after ex vitro transfer and so the photoinhibition was not observed even under HI. Slight increase in non-photochemical quenching under HI in ABA-treated plants suggested their better photoprotection. Thus application of ABA to the last subculture can improve acclimatization of in vitro grown plants to ex vitro conditions  相似文献   

9.
The aim of this research was to determine whether exogenous abscisic acid (ABA) applied immediately after ex vitro transfer of in vitro grown plants can improve their acclimatization. Tobacco (Nicotiana tabacum L.) plantlets were transferred into pots with Perlite initially moistened either by water or 50 μM ABA solution and they were grown under low (LI) or high (HI) irradiance of 150 and 700 μmol m−2 s−1, respectively. Endogenous content of ABA in tobacco leaves increased considerably after ABA application and even more in plants grown under HI. Stomatal conductance, transpiration rate and net photosynthetic rate decreased considerably 1 d after ex vitro transfer and increased thereafter. The gas exchange parameters were further decreased by ABA application and so wilting of these plants was limited. Chlorophyll (a+b) and β-carotene contents were higher in ABA-treated plants, but the content of xanthophyll cycle pigments was not increased. However, the degree of xanthophyll cycle pigments deepoxidation was decreased what also suggested less stress in ABA-treated plants. No dramatic changes in most chlorophyll a fluorescence parameters after ex vitro transfer suggested that the plants did not suffer from restriction of electron transport or photosystem damage.  相似文献   

10.
11.
Renealmia mexicana (Klotzsch ex. Petersen) is a tropical plant found in southern México with an ornamental value and a potential source of curcuminoids. Its distribution in Chiapas has decreased because of deforestation and low propagation and germination rate, so a protocol for in vitro propagation was developed. An orthogonal experimental design of L9 (34) in triplicate was used to investigate the effect of 6-benzyl adenine (BA), indole butyric acid (IBA), silver nitrate (AgNO3), and sucrose on shoot, root, and leaf development of plantlets grown in vitro. Plantlets with well-developed shoots and roots were transferred to pots containing a mixture of peat moss and agrolite for hardening before transfer to soil. The Murashige and Skoog (Physiol. Plant. 15:473–497, 1962) mineral medium (MS) supplemented with 4.4 μM BA, 2.5 μM IBA, 11.7 μM AgNO3y and 5.5% (w/v) sucrose gave most shoots, 8.9 μM BA, 2.5 μM IBA, 17.7 μM AgNO3 and 5.5% (w/v) sucrose most roots, and 8.9 μM BA, 4.9 μM IBA, 11.7 μM AgNO3 and 3.0% (w/v) sucrose most leaves, although other combinations were statistically equivalent in each case. Sucrose was the factor that most explained the variation in the promotion of shoots, roots, and leaves. The protocol developed resulted in up to 100% survival when plantlets were transferred to soil using AgNO3, confirming that hardening of plantlets in vitro using hormonal stimulation was a suitable strategy to improve acclimatization.  相似文献   

12.
With the objective to develop a practical method of screening potato for drought tolerance, shoot and root growth in plantlets raised in vitro (from nodal cuttings drawn from in vivo as well as in vitro grown plantlets) were studied in three genotypes with known root mass production under field conditions. Different levels of water stress were induced using five concentrations of agar in MS (Murashige and Skoog in Physiol Plant 15:473–497, 1962) medium. Water potential of various media ranged from −0.70 MPa to −0.98 MPa. Water stress in culture adversely affected plantlet growth, and the responses varied with genotype and explant source. Genotype IWA-1 was less affected than Konafubuki and Norin-1. In the experiment with explants from in vivo grown plants, the time to rooting was considerably delayed in Konafubuki and Norin-1 by an increase in agar concentration, but no such effect was observed in IWA-1. In all media, the mean number of roots and root length was greater in IWA-1 than Konafubuki and Norin-1, and the latter two genotypes were at par. At 10 gl−1 agar, IWA-1 had taller plantlets, heavier foliage dry weight, root volume, as well as root dry weight than Konafubuki and Norin-1, whereas the latter two genotypes were at par for all these characteristics. This pattern was similar to the reported pattern of these genotypes for root dry weight under field conditions. However, such similarity in the in vitro and field behavior of the tested genotypes was not observed when nodal cuttings drawn from in vitro plantlets were used as explants. It is concluded that in vitro screening of potato under specific and limited water stress conditions by raising plantlets from nodal cuttings drawn from in vivo grown plants may provide a system for effectively differentiating the genotypes for their expected root mass production under field conditions.  相似文献   

13.
Plant species capable of hyper-accumulating heavy metals are of considerable interest for phytoremediation, and differ in their ability to accumulate metals from environment. Using two brassica species (Brassica juncea and Brassica napus), nutrient solution experiments were conducted to study variation in tolerance to cadmium (Cd) toxicity based on (1) lipid peroxidation and (2) changes in antioxidative defense system in leaves of both plants (i.e., superoxide dismutase (SOD EC 1.15.1.1), catalase (CAT EC 1.11.1.6), ascorbate peroxidase (APX EC 1.11.1.11), guaiacol peroxidase (GPX EC 1.11.1.7), glutathione reductase (GR EC 1.6.4.2), levels of phytochelatins (PCs), non-protein thiols (NP-SH), and glutathione. Plants were grown in nutrient solution under controlled environmental conditions, and subjected to increasing concentrations of Cd (0, 10, 25 and 50 μM) for 15 days. Results showed marked differences between both species. Brassica napus under Cd stress exhibited increased level of lipid peroxidation, as was evidenced by the increased malondialdehyde (MDA) content in leaves. However, in Brassica juncea treated plants, MDA content remained unchanged. In Brassica napus, with the exception of GPX, activity levels of some antioxidant enzymes involved in detoxification of reactive oxygen species (ROS), including SOD, CAT, GR, and APX, decreased drastically at high Cd concentrations. By contrast, in leaves of Brassica juncea treated plants, there was either only slight or no change in the activities of the antioxidative enzymes. Analysis of the profile of anionic isoenzymes of GPX revealed qualitative changes occurring during Cd exposure for both species. Moreover, levels of NP-SH and PCs, monitored as metal detoxifying responses, were much increased in leaves of Brassica juncea by increasing Cd supply, but did not change in Brassica napus. These results indicate that Brassica juncea plants possess the greater potential for Cd accumulation and tolerance than Brassica napus.  相似文献   

14.
The in vitro response of sweet cherry (Prunus cerasus × P. canescens) rootstock Gisela 5 to increasing water deficit in the culture medium was studied. Water stress induced by the incorporation of 1, 2 and 4 % polyethylene glycol (PEG-8000) into the Murashige and Skoog medium was applied for 6 weeks. PEG-induced water stress reduced shoot dry mass, length, water content and relative chlorophyll content. Water stress also induced leaf necrosis without causing loss of viability in the explants. The increase in malondialdehyde content indicated oxidative stress. The activities of antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), peroxidase (POX) and glutathione reductase (GR) were also significantly elevated. The concentrations of K, Ca, Fe and Mn of shoots were decreased.  相似文献   

15.
Summary A protocol has been developed for high-frequency shoot regeneration and plant establishment of Tylophora indica from petiole-derived callus. Optimal callus was developed from petiole explants on Murashige and Skoog basal medium supplemented with 10μM2,4-dichlorophenoxyacetic acid +2,5μM thidiazuron (TDZ). Adventitious shoot induction was achieved from the surface of the callus after transferring onto shoot induction medium. The highest rate (90%) of shoot multiplication was achieved on MS medium containing 2.5μM TDZ. Individual elongated shoots were rooted best on halfstrength MS medium containing 0.5μM indole-3-butyric acid (IBA). When the basal cut ends of the in vitro-regenerated shoots were dipped in 150μM IBA for 30 min followed by transplantation in plastic pots containing sterile vermiculite, a mean of 4.1 roots per shoot developed. The in vitro-raised plantlets with well-developed shoot and roots were successfully established in earthen pots containing garden soil and grown in a greenhouse with 100% survival. Four months after transfer to pots, the performance of in vitro-propagated plants of T. indica was evaluated on the basis of selected physiological parameters and compared with ex vitro plants of the same age.  相似文献   

16.
Lemna minor L. treated with 20, 50, or 100 μM CuSO4 accumulated Cu and reactive oxygen species (hydrogen peroxide and superoxide radical) in frond and root cells. The time-course analysis of lipid peroxidation showed high increment in malondialdehyde production only after 12 and 48 h of Cu treatment. Guaiacol peroxidase and superoxide dismutase activities decreased after 48 h while glutathione reductase activity enhanced 48 h after Cu-treatment. Ascorbate and glutathione contents increased with the increasing Cu stress.  相似文献   

17.
24-Epibrassinolide (EBL) is considered the most probable brassinosteroid (BR) candidate that could be used for practical application in agriculture. EBL-induced stress-protective properties were evaluated in in vitro-grown tomato (Solanum lycopersicum L.) varieties Pusa Ruby (susceptible to nematodes) and PNR-7 (resistant to nematodes) during nematode pathogenesis. Sterilized tomato seeds treated with 10?11, 10?9, or 10?7 M EBL and germinated in vitro were inoculated with second-stage juveniles of Meloidogyne incognita [(Kofoid and White) Chitwood]. Whole plant analyses of morphological and biochemical parameters 7 d after inoculation showed significant improvements in plant growth and development for both varieties and a highly significant reduction in the number of galls in the susceptible variety. Increased specific activities of antioxidative enzymes (catalase, ascorbate peroxidase, glutathione reductase, glutathione peroxidase, guaiacol peroxidase, and superoxide dismutase) were observed in EBL-treated seedlings of both varieties, but increases were higher in the resistant variety. A highly significant increase in antioxidants (ascorbic acid content, total flavonoid content, total glutathione content, and total phenolic content) was observed in EBL-treated Pusa Ruby seedlings, whereas in PNR-7, significant increases were found except for total flavonoid content, which increased non-significantly. Confocal microscopic images showed amelioration of stress in roots of EBL-treated seedlings as indicated by the decrease in level of green fluorescence in them as compared to untreated and nematode-inoculated roots.  相似文献   

18.
The antioxidant defense system in three ecotypes of reed (Phragmites communis Trin.), swamp reed (SR), dune reed (DR), and heavy salt meadow reed (HSMR), from northwest China were investigated. The HSMR possessed the highest ratio of ascorbate (ASC)/dehydroascorbate (DHA) and activities of superoxide dismutase (SOD) and catalase among the three reed ecotypes, whereas, the DR exhibited the highest ratio of glutathione/glutathione disulfide and activities of ASC peroxidase (APX) and DHA reductase. Malondialdehyde and hydrogen peroxide contents were highest in HSMR, intermediate in SR, and lowest in DR. In addition, different isoenzymes of glutathion reductase, APX, SOD and DHA were also observed in three reed ecotypes.  相似文献   

19.
20.
An investigation of the cellular response of the freshwater microalga Chlorella zofingiensis to exogenous selenium showed that Chlorella cells can tolerate sodium selenite up to a concentration of 100 mg l−1. Cells grown in such a selenium-supplemented medium accumulated boiling-stable proteins in a concentration-dependant manner. Western blot analysis revealed that three of these boiling-stable proteins cross-reacted with anti-dehydrin antibody. Selenium was also found to exert an effect on antioxidative enzymes: superoxide dismutase (Fe-SOD and Mn-SOD isoforms) accumulated in response to selenium stress of 100 mg l−1 sodium selenite, as did a new form of selenium-dependent glutathione peroxidase. Upon transfer of the cells to a selenium-free medium, the boiling-stable proteins, the superoxide dismutase isoforms and the selenium-dependent glutathione peroxidase were all down regulated. The accumulation of boiling-stable proteins and the increased activities of the antioxidant enzymes in selenium-treated Chlorella cells suggest that these compounds are probably involved in the mechanism(s) of selenium tolerance of this alga.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号