首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Specificity of chicken liver carbohydrate binding protein   总被引:2,自引:0,他引:2  
T B Kuhlenschmidt  Y C Lee 《Biochemistry》1984,23(16):3569-3575
Chicken hepatic lectin was isolated with affinity chromatography by using neoglycoproteins of bovine serum albumin (BSA) to which n moles of glycosides has been attached by amidination (Glycn-AI-BSA) [Lee, Y. C., Stowell, C. P., & Krantz, M. J. (1976) Biochemistry 15, 3956-3963] attached to Sepharose 4B. The same protein could be isolated from Man-, GlcNAc-, and Glc-AI-BSA-Sepharose columns and was identical with the protein previously reported [Kawasaki, T., & Ashwell, G. (1977) J. Biol. Chem. 252, 6536-6543]. The sugar specificity for binding to the isolated chicken hepatic lectin examined with Glycn-AI-BSA showed the order of potency for binding Glycn-AI-BSA to be D-GlcNAc greater than D-Glc, D-Man, L-Fuc greater than D-Gal, and the estimated Ki's for binding GlcNAc36-AI-BSA, Glc37-AI-BSA, Man33-AI-BSA, and L-Fuc28-AI-BSA were (6-20) X 10(-11), (2-3) X 10(-8), (3-9) X 10(-8), and 5 X 10(-8) M, respectively. The binding requirements of the binding protein were studied with a wide variety of Glycn-BSA's with different sugars and aglyconic linkages, as well as simple sugars and glycosides. It was concluded that (1) GlcNAc is the most potent sugar for binding, (2) the requirement for C-2 substituents is flexible, (3) an equatorial OH group at C-3 and C-4 must be present, (4) the 5-CH2OH group is not required for binding, (5) the lectin cannot accommodate a negative charge at C-6, and (6) D-Man and L-Fuc bind equally well.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Binding and endocytosis of glycoproteins by isolated chicken hepatocytes   总被引:2,自引:0,他引:2  
The binding and endocytosis of glycoproteins containing different terminal sugars by isolated chicken hepatocytes were studied. At 2 degrees C, where there is no endocytosis, the hepatocyte surface bound 30 800 GlcNAc44-AI-BSA molecules [a bovine serum albumin (BSA) derivative which contains 44 residues of N-octylglucosamine (GlcNAc)] [Lee, Y.C., Stowell, C.P., & Krantz, M.J. (1976) Biochemistry 15, 3956-3963] and 32 900 asialoagalactoorosomucoid (AGOR) molecules per cell with estimated dissociation constants of 5 X 10(-10) and 4 X 10(-9) M, respectively. In the presence of digitonin or Triton X-100, each hepatocyte bound 7-18 times more ligand than in the absence of these detergents. Bound 125I-AGOR could be dissociated from the cell surface by 5.5 X 10(-5) M GlcNAc44-AI-BSA with a t 1/2 of 30 min, while GlcNAc (10 mM) or ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (4 mM) could dissociate over 98% of the surface-bound radioactivity within 10 min. Several neoglycoproteins inhibited the binding of 125I-AGOR, requiring for 50% inhibition 2.1 X 10(-9), 4.0 X 10(-7), 1.6 X 10(-6), and 2 X 10(-6) M for GlcNAc44-, Glc37-, Man43-, and L-Fuc28-AI-BSA, respectively. The bound AGOR and neoglycoproteins were internalized and degraded at 37 degrees C. [125I]Iodide was the only labeled degradation product found. When the hepatocytes were exposed to 250 nM AGOR at 37 degrees C, ca. 100 000 molecules of AGOR were associated with the cell surface at the steady state of endocytosis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The mannose 6-phosphate (Man 6-P) receptor operates to transport both endogenous newly synthesized acid hydrolases and extracellular enzymes to the lysosomal compartment. In a previous study (Gabel, C. A., and S. A. Foster, 1986, J. Cell Biol., 103:1817-1827), we noted that beta-glucuronidase molecules internalized by mouse L-cells via the Man 6-P receptor undergo a proteolytic cleavage and a limited dephosphorylation. In this report, we present evidence that indicates that the postendocytic alterations of the acid hydrolase molecules occur at a site through which the enzymes pass en route to the lysosomal compartment. Mouse L-cells incubated at 20 degrees C with beta-glucuronidase (isolated from mouse macrophage secretions) internalize the enzyme in a process that is inhibited by Man 6-P but unaffected by cycloheximide. As such, the linear accumulation of the ligand observed at 20 degrees C appears to occur through the continued recycling of the cell surface Man 6-P receptor. The subcellular distribution of the internalized ligands was assessed after homogenization of the cells and fractionation of the extracts by density gradient centrifugation. In contrast to the accumulation of the ligand within lysosomes at 37 degrees C, the beta-glucuronidase molecules internalized by the L cells at 20 degrees C accumulate within a population of vesicles that sediment at the same density as endocytic vesicles. Biochemical analysis of the internalized ligands indicates that: (a) the subunit molecular mass of both beta-glucuronidase and beta-galactosidase decrease upon cell association relative to the input form of the enzymes, and (b) the beta-glucuronidase molecules experience a limited dephosphorylation such that high-mannose-type oligosaccharides containing two phosphomonoesters are converted to single phosphomonoester forms. The same two post-endocytic alterations occur after the internalization of beta-glucuronidase by human I-cell disease fibroblasts, despite the low acid hydrolase content of these cells. The results indicate, therefore, that acid hydrolases internalized via the Man 6-P receptor are processed within the endocytic compartment. In that endogenous newly synthesized acid hydrolases display similar alterations during their maturation, the results further suggest that the endosomal compartment is involved in the sorting of ligands transported via both the cell surface and intracellular Man 6-P receptor.  相似文献   

4.
We have examined the distribution of mannose-6-phosphate (Man6P) receptors (215 kD) for lysosomal enzymes in cultured Clone 9 hepatocytes at various times after the addition or removal of lysosomotropic weak bases (chloroquine or NH4Cl). Our previous studies demonstrated that after treatment with these agents, Man6P receptors are depleted from their sorting site in the Golgi complex and accumulate in dilated vacuoles that could represent either endosomes or lysosomes (Brown, W. J., E. Constantinescu, and M. G. Farquhar, 1984, J. Cell Biol., 99:320-326). We have now investigated the nature of these vacuoles by labeling NH4Cl-treated cells simultaneously with anti-Man6P receptor IgG and lysosomal or endosomal markers. The structures in which the immunolabeled receptors are found were identified as endosomes based on the presence of endocytic tracers (lucifer yellow and cationized ferritin). The lysosomal membrane marker, lgp120, was associated with a separate population of swollen vacuoles that did not contain detectable Man6P receptors. When cells were allowed to recover from weak base treatment, the receptors reappeared in the Golgi cisternae of most cells (approximately 90%) within approximately 20 min, indicating that as the intra-endosomal pH drops and lysosomal enzymes dissociate, the entire population of receptors rapidly recycles to Golgi cisternae. When NH4Cl-treated cells were allowed to endocytose Man6P, a competitive inhibitor of lysosomal enzyme binding, the receptors also recycled to the Golgi cisternae, suggesting that lysosomal enzymes can dissociate from the receptors under these conditions (high pH + presence of competitive inhibitor). From these results it can be concluded that the intracellular itinerary of the 215-kD Man6P receptor involves its cycling via coated vesicles between the Golgi complex and endosomes, ligand dissociation is both necessary and sufficient to trigger the recycling of Man6P receptors to the Golgi complex, and endosomes rather than secondary lysosomes represent the junction where endocytosed material and primary lysosomes carrying receptor-bound lysosomal enzymes meet.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
R T Lee  Y C Lee 《Biochemistry》1987,26(20):6320-6329
The galactose/N-acetylgalactosamine-specific receptor (also known as asialoglycoprotein receptor) of rat hepatocytes consists of three subunits, one of which [43 kilodalton (kDa)] exists in a greater abundance (up to 70% of total protein) over the two minor species (52 and 60 kDa). When the receptor on the hepatocyte membranes was photoaffinity labeled with an 125I-labeled high-affinity reagent [a triantennary glycopeptide containing an aryl azide group on galactosyl residues; Lee, R. T., & Lee, Y. C. (1986) Biochemistry 25, 6835-6841], the labeling occurred mainly (51-80%) on one of the minor bands (52 kDa). Similarly, affinity-bound, N-acetylgalactosamine-modified lactoperoxidase radioiodinated the same 52-kDa band preferentially. In contrast, both the photoaffinity labeling and lactoperoxidase-catalyzed iodination of the purified, detergent-solubilized receptor resulted in a distribution of the label that is comparable to the Coomassie blue staining pattern of the three bands; i.e., the 43-kDa band was the major band labeled. These and other experimental results suggest that the preferential labeling of the minor band and inefficient labeling of the major band on the hepatocyte membrane resulted from a specific topological arrangement of these subunits on the membranes. We postulate that in the native, membrane-bound state of the receptor, the 52-kDa minor band is topologically prominent, while the major (43 kDa) band is partially masked. This partial masking may result from a tight packing of the receptor subunits on the membranes to form a lattice work [Hardy, M. R., Townsend, R. R., Parkhurst, S. M., & Lee, Y. C. (1985) Biochemistry 24, 22-28].  相似文献   

6.
Lysosomal alpha-mannosidase is a broad specificity exoglycosidase involved in the ordered degradation of glycoproteins. The bovine enzyme is used as an important model for understanding the inborn lysosomal storage disorder alpha-mannosidosis. This enzyme of about 1,000 amino acids consists of five peptide chains, namely a- to e-peptides and contains eight N-glycosylation sites. The N(497) glycosylation site of the c-peptide chain is evolutionary conserved among LAMANs and is very important for the maintenance of the lysosomal stability of the enzyme. In this work, relying on an approach based on mass spectrometric techniques in combination with exoglycosidase digestions and chemical derivatizations, we will report the detailed structures of the N-glycans and their distribution within six of the eight N-glycosylation sites of the bovine glycoprotein. The analysis of the PNGase F-released glycans from the bovine LAMAN revealed that the major structures fall into three classes, namely high-mannose-type (Fuc(0-1)Glc(0-1)Man(4-9)GlcNAc(2)), hybrid-type (Gal(0-1)Man(4-5)GlcNAc(4)), and complex-type (Fuc(0-1)Gal(0-2)Man(3)GlcNAc(3-5)) N-glycans, with core fucosylation and bisecting GlcNAc. To investigate the exact structure of the N-glycans at each glycosylation site, the peptide chains of the bovine LAMAN were separated using SDS-PAGE and in-gel deglycosylation. These experiments revealed that the N(497) and N(930) sites, from the c- and e-peptides, contain only high-mannose-type glycans Glc(0-1)Man(5-9)GlcNAc(2), including the evolutionary conserved Glc(1)Man(9)GlcNAc(2) glycan, and Fuc(0-1)Man(3-5)GlcNAc(2), respectively. Therefore, to determine the microheterogeneity within the remaining glycosylation sites, the glycoprotein was reduced, carboxymethylated, and digested with trypsin. The tryptic fragments were then subjected to concanavalin A (Con A) affinity chromatography, and the material bound by Con A-Sepharose was purified using reverse-phase high-performance liquid chromatography (HPLC). The tandem mass spectrometry (ESI-MS/MS) and the MALDI analysis of the PNGase F-digested glycopeptides indicated that (1) N(692) and N(766) sites from the d-peptide chain both bear glycans consisting of high-mannose (Fuc(0-1)Man(3-7)GlcNAc(2)), hybrid (Fuc(0-1) Gal(0-1)Man(4-5)GlcNAc(4)), and complex (Fuc(0-1)Gal(0-2)Man(3)GlcNAc(4-5)) structures; and (2) the N(367) site, from the b-peptide chain, is glycosylated only with high-mannose structures (Fuc(0-1)Man(3-5)GlcNAc(2)). Taking into consideration the data obtained from the analysis of either the in-gel-released glycans from the abc- and c-peptides or the tryptic glycopeptide containing the N(367) site, the N(133) site, from the a-peptide, was shown to be glycosylated with truncated and high-mannose-type (Fuc(0-1)Man(4-5)GlcNAc(2)), complex-type (Fuc(0-1)Gal(0-1)Man(3)GlcNAc(5)), and hybrid-type (Fuc(0-1)Gal(0-1)Man(5)GlcNAc(4)) glycans.  相似文献   

7.
Sleat DE  Lackland H  Wang Y  Sohar I  Xiao G  Li H  Lobel P 《Proteomics》2005,5(6):1520-1532
The lysosome is a membrane delimited cytoplasmic organelle that contains at least 50 hydrolytic enzymes and associated cofactors. The biomedical importance of these enzymes is highlighted by the many lysosomal storage disorders that are associated with mutations in genes encoding lysosomal proteins, and there is also evidence that lysosomal activities may be involved in more widespread human diseases. The aim of this study was to characterize the human brain lysosomal proteome with the goal of establishing a reference map to investigate human diseases of unknown etiology and to gain insights into the cellular function of the lysosome. Proteins containing mannose 6-phosphate (Man6-P), a carbohydrate modification used for targeting resident soluble lysosomal proteins to the lysosome, were affinity-purified using immobilized Man6-P receptor. Fractionation by two-dimensional electrophoresis resolved a complex mixture comprising approximately 800 spots. Constituent proteins in each spot were identified using a combination of matrix-assisted laser desorption/ionization-time of flight mass spectrometry (both peptide mass fingerprinting and tandem mass spectrometry) [corrected] on in-gel tryptic digests and N-terminal sequencing. In a complementary analysis, we also analyzed a tryptic digest of the unfractionated mixture by liquid chromatography MS/MS. In total, 61 different proteins were identified. Seven were likely contaminants associated with true Man6-P glycoproteins. Forty-one were known lysosomal proteins of which 11 have not previously been reported to contain Man6-P. An additional nine proteins were either uncharacterized or proteins not previously reported to have lysosomal function. We found that the human brain Man6-P-containing lysosomal proteome is highly complex and contains more proteins with a much greater number of individual isoforms than found in previous studies of Man6-P glycoproteomes.  相似文献   

8.
The basidiolipids of six mushroom species, i.e. the basidiomycetes Amanita virosa (engl., death cup), Calvatia exipuliformis (engl., puffball), Cantharellus cibarius (engl., chanterelle), Leccinum scabrum (engl., red birch boletus), Lentinus edodes (jap., Shiitake), and Pleurotus ostreatus (engl., oystermushroom), were isolated, and their chemical structures investigated. All glycolipids are structurally related to those of the Agaricales (engl., field mushroom). They are glycoinositolphosphosphingolipids, their ceramide moiety consisting of t18:0-trihydroxysphinganine and an alpha-hydroxy long-chain fatty acid. In contrast to a previous study [Jennemann, R., Bauer, B.L., Bertalanffy, H., Geyer, R., Gschwind, R.M., Selmer, T. & Wiegandt, H. (1999) Eur. J. Biochem. 259, 331--338], the glycoside anomery of the hexose (mannose) connected to the inositol of all investigated basidiomycete glycolipids, including the basidiolipids of Agaricus bisporus, was determined unequivocally to be alpha. Therefore, the root structure of all basidiolipids consists of alpha-DManp-2Ins1-[PO(4)]-Cer. In addition, for some mushroom species, the occurrence of an inositol substitution position variant, alpha-Manp-4Ins1-[PO(40]-Cer, is shown. The carbohydrate of chanterelle basidiolipids consists solely of mannose, i.e. Cc1, Man alpha-3 or -6Man alpha; Cc2, Man alpha-3(Man alpha-6)Man alpha-. All other species investigated show extension of the alpha-mannoside in the 6-position by beta-galactoside, which, in some instances, is alpha-fucosylated in 2-position (Fuc alpha-2)Gal beta-6Man alpha-. Further sugar chain elongation at the beta-galactoside may be in 3- and/or 6-position by alpha-galactoside, e.g. Ce4, Po2, Gal alpha-3-(Gal alpha-6)(Fuc alpha-2)Gal beta-6Man alpha-, whereas A. virosa, Av-3, has a more complex, highly alpha-fucosylated terminus, Gal alpha-3 (Fuc alpha-2)(Fuc alpha-6)Gal alpha-2(Gal alpha-3)Gal beta-6Man alpha-. L. edodes basidiolipids show further elongation by alpha-mannoside, e.g. Le3, Man alpha-2Man alpha-6Gal alpha-3(Fuc alpha-2)Gal beta-6Man alpha-, C. exipuliformis glycolipid by alpha-glucoside, i.e. Ce3, Glc alpha-6Gal beta-6Man alpha-. Basidiolipid Ls1 from L. scabrum, notably, has a 3-alpha-mannosylated alpha-fucose, i.e. Gal alpha-6(Man alpha-3Fuc alpha-2)Gal alpha-6Gal beta-6Man alpha-. In conclusion, basidiolipids, though identical in their ceramide constitution, display wide and systematic mushroom species dependent variabilities of their chemical structures.  相似文献   

9.
Melanosomes and lysosomes share several structural and biosynthetic properties. Therefore, a large number of mouse pigment mutants were tested to determine whether genes affecting melanosome structure of function might also affect the lysosome. Among 31 mouse pigment mutants, six had 1.5- to 2.5-fold increased concentrations of kidney beta-glucuronidase. Three mutants, pale ear, pearl and pallid, had a generalized effect on lysosomal enzymes since there were coordinate increases in kidney beta-galactosidase and alpha-mannosidase. The effects of these three mutations are lysosome specific since rates of kidney protein synthesis and activities of three nonlysosomal kidney enzymes were normal. Also, the mutants are relatively tissue specific in that all had normal liver lysosomal enzyme concentrations.--A common dysfunction in all three mutants was a lowered rate of lysosomal enzyme secretion from kidney into urine. While normal C57BL/6J mice daily secreted 27 to 30% of total kidney beta-glucuronidase and beta-galactosidase, secretion of these two enzymes was coordinately depressed to 1 to 2%, 8 to 9% and 4 to 5% of total kidney enzyme in the pale-ear, pearl and pallid mutants, respectively. Although depressed lysosomal enzyme secretion is the major pigment mutant alteration, the higher lysomal enzyme concentrations in pearl and pallid may be partly due to an increase in lysosomal enzyme synthesis. In these mutants kidney glucuronidase synthetic rate was increased 1.4- to 1.5-fold.--These results suggest that there are several critical genes in mammals that control the biogenesis, processing and/or function of related classes of subcellular organelles. The mechanism of action of these genes is amenable to further analysis since they have been incorporated into congenic inbred strains of mice.  相似文献   

10.
New types of neoglycoproteins, -caseins coupled with ovalbumin-derived asparagine oligosaccharides (AO), aspartate aminotransferase-phosphopyridoxylated AO complex (AAT-PG), and streptavidin-biotinylated AO complex (SA-BAO), were tested for their inhibitory effect on binding of bovine serum albumin derivatized with thiomannoside, Man-AI-BSA [Lee YC, Stowell CP, Krantz MJ (1976) Biochemistry 15:3956–63] by rabbit alveolar macrophages. The -casein derivatives and the AAT-PG complex increased binding affinity as the number of oligosaccharide chains attached was increased. Their inhibitory potencies were closely related to those of the Man-Al-BSA derivatives [Hoppe CA, Lee YC (1983) J Biol Chem 258:14193–99] on the basis of terminal mannose density. The SA-BAO complex containing three AO chains gave stronger inhibitory potency than the -casein derivative with three AO residues, suggesting that proper orientation of the oligosaccharides on the protein can affect the receptor-ligand interaction.Abbreviations BSA bovine serum albumin - Man43-BSA BSA derivative containing on average 43 residues of Man linked through an amidino-linkage [7] - AO asparagine oligosaccharide (Man5-GlcNAc2-Asn) from ovalbumin - AAT aspartate aminotransferase - PG phosphopyridoxylated AO - SA streptavidin - BAO biotinylated AO  相似文献   

11.
Characterization of mechanisms involved in secretion of active heparanase   总被引:5,自引:0,他引:5  
Heparanase is an endo-beta-D-glucuronidase involved in extracellular matrix remodeling and degradation and implicated in tumor metastasis, angiogenesis, inflammation, and autoimmunity. The enzyme is synthesized as a latent 65-kDa protein and is processed in the lysosomal compartment to an active 58-kDa heterodimer, where it is stored in a stable form. In contrast, its heparan sulfate substrate is localized extracellularly, suggesting the existence of mechanisms that trigger heparanase secretion. Here we show that secretion of the active enzyme is mediated by the protein kinase A and C pathways. Moreover, secretion of active heparanase was observed upon cell stimulation with physiological concentrations of adenosine, ADP, and ATP, as well as by the noncleavable ATP analogue adenosine 5'-O-(thiotriphosphate). Indeed, heparanase secretion was noted upon cell stimulation with a specific P2Y1 receptor agonist and was inhibited by P2Y receptor antagonists. The kinetics of heparanase secretion resembled the secretion of cathepsin D, a lysosomal enzyme, indicating that the secreted heparanase is of lysosomal origin. We suggest that secretion of active heparanase is initiated by extracellular cues activating the protein kinase A and C signaling pathways. The secreted enzyme(s) then facilitate cell invasion associated with cancer metastasis, angiogenesis, and inflammation.  相似文献   

12.
The substrate specificity of rat liver cytosolic neutral alpha-D-mannosidase was investigated by in vitro incubation with a crude cytosolic fraction of oligomannosyl oligosaccharides Man9GlcNAc, Man7GlcNAc, Man5GlcNAc I and II isomers and Man4GlcNAc having the following structures: Man9GlcNAc, Man(alpha 1-2)Man(alpha 1-3)[Man(alpha 1-2)Man(alpha 1-6)]Man(alpha 1-6) [Man(alpha 1-2)Man(alpha 1-3)]Man(beta 1-4)GlcNAc; Man5GlcNAc I, Man(alpha 1-3)[Man(alpha 1-6)]-Man(alpha 1-6)Man(alpha 1-3)] Man(beta 1-4)GlcNAc; Man5GlcNAc II, Man(alpha 1-2)Man(alpha 1-2)Man(alpha 1-3) [Man(alpha 1-6)]Man(beta 1-4)GlcNAc; Man4GlcNAc, Man(alpha 1-2)Man(alpha 1-2)Man(alpha 1-3)Man(beta 1-4)GlcNAc. The different oligosaccharide isomers resulting from alpha-D-mannosidase hydrolysis were analyzed by 1H-NMR spectroscopy after HPLC separation. The cytosolic alpha-D-mannosidase activity is able to hydrolyse all types of alpha-mannosidic linkages found in the glycans of the oligomannosidic type, i.e. alpha-1,2, alpha-1,3 and alpha-1,6. Nevertheless the enzyme is highly active on branched Man9GlcNAc or Man5GlcNAc I oligosaccharides and rather inactive towards the linear Man4GlcNAc oligosaccharide. Structural analysis of the reaction products of the soluble alpha-D-mannosidase acting on Man5-GlcNAc I and Man9GlcNAc gives Man3GlcNAc, Man(alpha 1-6)[Man(alpha 1-3)]Man(beta 1-4)GlcNAc, and Man5GlcNAc II oligosaccharides, respectively. This Man5GlcNAc II, Man(alpha 1-2)Man(alpha 1-3)[Man(alpha 1-6)]Man(beta 1-4)GlcNAc, represents the 'construction' Man5 oligosaccharide chain of the dolichol pathway formed in the cytosolic compartment during the biosynthesis of N-glycosylprotein glycans. The cytosolic alpha-D-mannosidase is activated by Co2+, insensitive to 1-deoxymannojirimycin but strongly inhibited by swainsonine in the presence of Co2+ ions. The enzyme shows a highly specific action different from that previously described for the lysosomal alpha-D-mannosidases [Michalski, J.C., Haeuw, J.F., Wieruszeski, J.M., Montreuil, J. and Strecker, G. (1990) Eur. J. Biochem. 189, 369-379]. A possible complementarity between cytosolic and lysosomal alpha-D-mannosidase activities in the catabolism of N-glycosylprotein is proposed.  相似文献   

13.
The insulin-like growth-factor-II/mannose-6-phosphate (IGF-II/Man6P) receptor binds two classes of ligands, insulin-like growth factors and lysosomal enzymes. We have examined the ability of the lysosomal enzyme, beta-galactosidase, to modulate the binding of 125I-IGF-II to the receptor. beta-Galactosidase purified from bovine testis was fractionated on a DEAF-Sephacel ion-exchange column. Column fractions were assayed for enzymatic activity and for ability to inhibit the binding of 125I-IGF-II to the IGF-II/Man6P receptor. Enzyme fractions eluting at higher NaCl concentrations which had previously been shown to exhibit greater uptake by cells in culture, exhibited greater potency in inhibiting the binding of 125I-IGF-II to the receptor. A pool of these fractions from the DEAE-Sephacel column inhibited 125I-IGF-II binding to pure receptor by 80% with the concentration required for half-maximal inhibition being 25 nM. The inhibition of binding by beta-galactosidase was completely blocked by simultaneous incubation with Man6P. Inhibition of the enzymatic activity of beta-galactosidase with D-galactonic acid gamma-lactone did not affect the ability of beta-galactosidase to inhibit the binding of 125I-IGF-II to the receptor. Scatchard analysis of IGF-II binding to pure receptor in the presence and absence of beta-galactosidase showed that beta-galactosidase decreased the binding affinity for IGF-II (Kd 0.26 nM versus 1.0 nM in the presence of 57 nM beta-galactosidase). We confirmed the observations of others that Man6P alone actually increases the binding of 125I-IGF-II to the IGF-II/Man6P receptor, but we found that this phenomenon was dependent upon the method of preparation of the IGF-II/Man6P receptor. Microsomal membrane preparations, solubilized membranes, and receptors purified on an IGF-II-Sepharose column all exhibited stimulation of 125I-IGF-II binding by Man6P, whereas receptors purified on lysosomal enzyme affinity columns showed little or no stimulation of 125I-IGF-II binding by Man6P. We conclude that beta-galactosidase decreases the binding affinity of the IGF-II/Man-6-P receptor for IGF-II by binding with high affinity to the Man6P-recognition site.  相似文献   

14.
Adaptor protein interaction with specific peptide motifs found within the intracellular, carboxyl terminus of chemokine receptor CXCR2 has been shown to modulate intracellular trafficking and receptor function. Efficient ligand-induced internalization of this receptor is dependent on the binding of adaptor protein 2 to the specific LLKIL motif found within the carboxyl terminus (1). In this study we show that the carboxyl-terminal type 1 PDZ ligand motif (-STTL) of CXCR2 plays an essential role in both proper intracellular receptor trafficking and efficient cellular chemotaxis. First, we show that CXCR2 is sorted to and degraded in the lysosome upon long-term ligand stimulation. We also show that receptor degradation is not dependent upon receptor ubiquitination, but is instead modulated by the carboxyl-terminal type I PDZ ligand of CXCR2. Deletion of this ligand results in increased degradation, earlier co-localization with the lysosome, and enhanced sorting to the Rab7-positive late endosome. We also show that deletion of this ligand effects neither receptor internalization nor receptor recycling. Furthermore, we demonstrate that deletion of the PDZ ligand motif results in impaired chemotactic response. The data presented here demonstrate that the type I PDZ ligand of CXCR2 acts to both delay lysosomal sorting and facilitate proper chemotactic response.  相似文献   

15.
Lee RT  Hsu TL  Huang SK  Hsieh SL  Wong CH  Lee YC 《Glycobiology》2011,21(4):512-520
C-type lectins (CTLs) are proteins that contain one or more carbohydrate-recognition domains (CRDs) that require calcium for sugar binding and share high degree of sequence homology and tertiary structure. CTLs whose CRD contain EPN (Glu-Pro-Asn) tripeptide motifs have potential to bind mannose (Man), N-acetylglucosamine (GlcNAc), glucose (Glc) and l-fucose (Fuc), whereas those with QPD (Glu-Pro-Asp) tripeptide motifs bind galactose (Gal) and N-acetylgalactosamine (GalNAc). We report here for the first time a direct comparison of monosaccharide (and some di- and trisaccharides)-binding characteristics of 11 EPX-containing (X = N, S or D) immune-related CTLs using a competition assay and an enzyme-linked immunosorbent assay, and neoglycoproteins as ligand. The EPX CTLs studied are DC-SIGN, L-SIGN, mSIGNR1, human and mouse mannose receptors, Langerin, BDCA-2, DCIR, dectin-2, MCL and MINCLE. We found that: (1) they all bound Man and Fuc; (2) binding of Glc and GlcNAc varied considerably among these lectins, but was always less than Man and Fuc; (3) in general, Gal and GalNAc were not bound. However, dectin-2, DCIR and MINCLE showed ability to bind Gal/GalNAc; (4) DC-SIGN, L-SIGN, mSIGNR1 and Langerin showed enhanced binding of Manα2Man over Man, whereas all others showed no enhancement; (5) DC-SIGN bound Le(x) trisaccharide structure, which has terminal Gal and Fuc residues, more avidly than Fuc, whereas L-SIGN, mSIGNR1, DCIR and MINCLE bound Le(x) less avidly than Fuc. BDCA-2, dectin-2, Langerin, MCL and mannose receptor did not bind Le(x) at all.  相似文献   

16.
Enzyme replacement therapy for lysosomal storage disorders depends on efficient uptake of recombinant enzyme into the tissues of patients. This uptake is mediated by oligosaccharide receptors including the cation-independent mannose 6-phosphate receptor and the mannose receptor. We have sought to exploit alternative receptor systems that are independent of glycosylation but allow for efficient delivery to the lysosome. Fusions of the human lysosomal enzymes alpha-l-iduronidase or acid alpha-glucosidase with the receptor-associated protein were efficiently endocytosed by lysosomal storage disorder patient fibroblasts, rat C6 glioma cells, mouse C2C12 myoblasts, and recombinant Chinese hamster ovary cells expressing individual members of the low-density lipoprotein receptor family. Uptake of the fusions exceeded that of phosphorylated enzyme in all cases, often by an order of magnitude or greater. Uptake was specifically mediated by members of the low-density lipoprotein receptor protein family and was followed by delivery of the fusions to the lysosome. The advantages of the lipoprotein receptor system over oligosaccharide receptor systems include more efficient cellular delivery and the potential for transcytosis of ligands across tight endothelia, including the blood-brain barrier.  相似文献   

17.
We previously reported that zebrafishalpha1-3fucosyltrasferase 1 (zFT1) was expressed in embryos at the segmentation period, and was capable of synthesizing the Lewis x epitope [Gal beta1-4(Fuc alpha1-3)GlcNAc] [Kageyama et.al, J. Biochem., 125, 838-845 (1999)]. In the current study, we attempted to detect the enzyme products of zFT1 in zebrafish embryos. Oligosaccharides were prepared from the zebrafish embryos at 12, 18 and 48 h after fertilization and labelled with a fluorophore, 2-aminopyridine, for highly sensitive detections. Pyridylamino (PA)-oligosaccharides that were alpha1-3/4fucosidase sensitive and time-dependently expressed at 18 h after fertilization were identified as candidates for the in vivo products synthesized by zFT1. Structures of these oligosaccharides were determined by a combination of exoglycosidase digestions and two-dimensional HPLC sugar mapping to be the biantennary complex-type structures with two Lewis x epitopes: (Gal beta1-4)(0,1,2)-{Gal beta1-4(Fuc alpha1-3)GlcNAc beta1-2Man alpha1-6[Gal beta1-4(Fuc alpha1-3)GlcNAc beta1-2Man alpha1-3]}Man beta1-4GlcNAc, and (Gal beta1-4)(0,1)-{Gal beta1-4(Fuc alpha1-3)GlcNAc beta1-2Man alpha1-6[Gal beta1-4(Fuc alpha1-3)GlcNAc beta1-2Man alpha1-3]} Man beta1-4GlcNAc beta1-4GlcNAc. The presence of Lewis x structure of these oligosaccharides together with their expression time suggests that they are products of zFT1. Remarkably, most of these oligosaccharides were free form. Furthermore, we detected an endo-beta-N-acetylglucosaminidase activity in the 18 h embryo. These results suggest that the oligosaccharides synthesized by zFT1 are present in the embryo at the segmentation period in free form, owing to the liberation from glycoproteins with endo-beta-N-acetylglucosaminidase(s) and/or glycoamidase(s).  相似文献   

18.
Binding and processing of (125)I-ACTH by isolated rat splenic lymphocytes   总被引:1,自引:0,他引:1  
The effect of incubation temperature and ligand competition was tested for (125)I-ACTH binding to isolated rat lymphocytes. AlphaMSH but not Agouti-like peptide was an effective competitive inhibitor for cell surface binding at 4 degrees C. Cells incubated with (125)I-ACTH at 37 degrees C rapidly associated ligand for 10 min and then gradually lost the radioactivity with time. Cells incubated with (125)I-ACTH at 4 degrees C accumulated ligand to only about half the maximal amount when compared to cells incubated at 37 degrees C for 10 min. Temperatures below 20 degrees C and toxins that block lysosomal degradation blocked the loss of cell-associated radioactivity. These results suggest the lymphocyte ACTH receptor is the Melanocortin 5 receptor and the receptor is internalized by endocytosis to deliver ligand to the lysosome.  相似文献   

19.
Although dimerization appears to be a common property of G-protein-coupled receptors (GPCRs), it remains unclear whether a GPCR dimer binds one or two molecules of ligand and whether ligand binding results in activation of one or two G-proteins when measured using functional assays in intact living cells. Previously, we demonstrated that serotonin 5-hydroxytryptamine2C (5-HT2C) receptors form homodimers (Herrick-Davis, K., Grinde, E., and Mazurkiewicz, J. (2004) Biochemistry 43, 13963-13971). In the present study, an inactive 5-HT(2C) receptor was created and coexpressed with wild-type 5-HT2C receptors to determine whether dimerization regulates receptor function and to determine the ligand/dimer/G-protein stoichiometry in living cells. Mutagenesis of Ser138 to Arg (S138R) produced a 5-HT2C receptor incapable of binding ligand or stimulating inositol phosphate (IP) signaling. Confocal fluorescence imaging revealed plasma membrane expression of yellow fluorescent protein-tagged S138R receptors. Expression of wild-type 5-HT2C receptors in an S138R-expressing stable cell line had no effect on ligand binding to wild-type 5-HT2C receptors, but inhibited basal and 5-HT-stimulated IP signaling as well as constitutive and 5-HT-stimulated endocytosis of wild-type 5-HT2C receptors. M1 muscarinic receptor activation of IP production was normal in the S138R-expressing cells. Heterodimerization of S138R with wild-type 5-HT2C receptors was visualized in living cells using confocal fluorescence resonance energy transfer (FRET). FRET was dependent on the donor/acceptor ratio and independent of the receptor expression level. Therefore, inactive 5-HT2C receptors inhibit wild-type 5-HT2C receptor function by forming nonfunctional heterodimers expressed on the plasma membrane. These results are consistent with a model in which one GPCR dimer binds two molecules of ligand and one G-protein and indicate that dimerization is essential for 5-HT receptor function.  相似文献   

20.
Past evidence has suggested that the lysosomal pathway is an important site of cytoplasmic RNA degradation in the hepatic parenchymal cell (Lardeux, B. R., Heydrick, S. J., and Mortimore, G. E. (1987) J. Biol. Chem. 262, 14507-14519). We now provide additional support for this notion by quantitating degradable RNA in lysosomes and correlating its pool size with hepatic RNA degradation. Rat livers, previously labeled with [6-14C]orotic acid, were perfused with graded levels of amino acids over the full range of induced autophagy; RNA degradation was determined from [14C]cytidine release. Close correspondence between the marker beta-acetylglucosaminidase and the breakdown of RNA to cytidine in subcellular fractions indicated that the lysosome was the main site of catabolism, a conclusion supported by the fact that degradation was enhanced when external pH was lowered from 7 to 6. Although [14C]cytidine was also released in homogenates by the action of natural ribonucleases on cytosolic RNA, this source was eliminated by unlabeled exogenous RNA. The size of the degradable RNA pool in lysosomes, determined from the total release of cytidine in homogenates, correlated directly with rates of hepatic RNA degradation over the full range of basal and induced degradation. A direct correlation was also seen between RNA degradation and cytidine pools within lysosomal particles. Because cytosolic cytidine was not taken up by lysosomes under these conditions, the pool could only have arisen from the breakdown of intralysosomal RNA. As determined by cytidine production, these findings support the view that the lysosomal-vacuolar system is the main, if not sole, site of induced and basal RNA degradation in liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号