首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
B. E. Juniper  J. R. Lawton 《Planta》1979,145(5):411-416
Caffeine, (1:3:7-tri-methyl-xanthine), either as a prefixation treatment or included with glutaralde-hyde as the primary fixative, destroys or disorganises the microtubules associated with the formation of secondary walls in fibres from the flowering stem of the grass Lolium temulentum L. There is no observable effect of caffeine treatment on the microtubules associated with primary wall formation in collenchyma and young fibres from L. temulentum or in root cap cells of Zea mays L. and Phaseolus vulgaris L. The microtubules associated with primary wall formation are destroyed by cold treatment but not those associated with secondary wall formation. Tannic acid included in the fixative shows the microtubules associated with secondary wall formation in fibres of L. temulentum to be composed of 13 subunits. Treatment with lanthanum hydroxide does not stain the core or the halo of the microtubules.Abbreviation PIPES Piperazine N-N- bis 2 ethanol sulphonic acid The Grassland Research Institute is financed through the Agricultural Research Council  相似文献   

2.
Summary Endosperm cellularization in Ranunculus sceleratus was studied in terms of the initiation of cell-wall formation in the coenocytic endosperm. The first endosperm cell walls were in an anticlinal position relative to the cell wall of the embryo sac and originated from the cell plates and not from wall ingrowths from the embryo-sac wall itself. Alveolar endosperm was formed 3 days after pollination. Microtubules were associated with the freely growing wall ends of the anticlinal walls and were observed in various orientations that generally ranged from angles of 45 ° to 90 ° to the plane of the wall. They were absent in the regions where vesicles had already fused. These microtubules may function in maintaining the growth and the direction of growth of the anticlinal wall until cellularization is completed. At the site where three neighbouring alveoli share their freely growing wall ends, remarkable configurations of microtubules were observed: in each alveolus, microtubules ran predominantly parallel to the bisector of the angle formed by the common walls. These microtubules may form a physically stable framework and maintain the direction of growth of the wall edges. It is concluded that the growing edge of the anticlinal endosperm wall and its associated microtubules are a special continuum of the original phragmoplast that gave rise to the anticlinal wall.  相似文献   

3.
Summary The arrangement and relative stability of cortical microtubules during and after wound induction in internodal cells ofNitella flexilis andNitella pseudoflabellata were examined by immunofluorescence and by microinjection of fluorescently tagged tubulin. The formation of cellulosic wall appositions (wound walls), induced by treatment with 5×10–2MCaCl2, was identicalin young, growing cells and older non-growing internodes, suggesting that the initial microtubule pattern, which differs in growing and non-growing cells, does not influence wound wall formation. Depolymerization of microtubules with oryzalin did not alter wound wall morphology and microtubules were not detected during wound wall formation. After cessation of wound wall growth, microtubules were once again found in the wound site but these were always randomly oriented, even in young cells where the surrounding microtubules were organized into transverse arrays. Microtubules were similarly randomized in chloroplast-free windows induced by laser irradiation. Analysis of microtubule organization in living cells revealed that the microtubules in wound sites are less stable than the microtubules of adjacent transversely oriented arrays. The results indicate that although wounding can alter the relative stability and spatial organization of cortical microtubules, microtubules are neither involved in vesicle transport nor the construction of cellulosic wound walls.Abbreviations AFW artificial fresh water - BSA bovine serum albumin - DMSO dimethyl sulfoxide - FITC fluorescein isothiocyanate - PBS phosphate-buffered saline  相似文献   

4.
Summary Immunofluorescence methods were developed for examining the distribution of microtubules in freshly isolated and cultured protoplasts and regenerated somatic embryos of white spruce (Picea glauca). Freshly isolated protoplasts consisted of both uniand multinucleate types. Uninucleate protoplasts established parallel cortical microtubules during cell wall formation and cell shaping, divided within 24 h and developed into somatic embryos in culture. Dividing cells were characterized by preprophase bands (PPBs) of microtubules, atypical spindle microtubules focused at the poles and a typical phragmoplast at telophase. Multinucleate protoplasts also established parallel arrays of cortical microtubules during cell wall formation. In addition their nuclei divided synchronously within 4 days, then cell walls formed between the daughter nuclei. Individual multinucleate protoplast-derived colonies subsequently gave rise to elongate suspensor cells thereby forming embryo-like structures by 7 days.  相似文献   

5.
It is shown that root hairs of most aquatic plants have a helicoidal cell-wall texture. Cell walls of root hairs of the aquatic/marshland plant Ranunculus lingua, however, have an axial microfibril alignment. The occurrence of a helicoidal wall texture is not limited to root hairs of aquatic plants: the terrestrial plant Zebrina purpusii has a helicoidal root-hair wall texture, too. With the exception of the grasses, the occurrence of root hairs with helicoidal cell walls pertains to species with predetermined root-hair-forming cells, trichoblasts. The rotation mode of the helicoid is species-specific. The average angle between fibrils of adjacent lamellae varies from 23° to 40°. In Hydrocharis morsus-ranae, cortical microtubules have a net-axial orientation and thus do not parallel nascent microfibrils. The deposition of the helicoidal cell wall is discussed.In honour of Prof. Dr. H.F Linskens (Nijmegen) on the occasion of his 65th birthday  相似文献   

6.
Summary Cytokinesis in Impatiens sultani microspore mother cells is simultaneous. It starts with the formation of small ingrowths of the surrounding callosic wall. Next, an incomplete cell plate is formed by fusion of small dictyosome vesicles. The cell plate consists of a network of anastomosing tubules and sacs. Aggregates of fusing vesicles are associated with bundles of microtubules, which are oriented perpendicular to the plane of the future cell walls. In the sacculate parts of the cell plate, some callose is deposited, while the associated microtubules disappear. The cell walls ultimately develop by enlargement of the previously formed wall ingrowths, which successively incorporate the elements of the cell plate. The enlargement and thickening of the walls is not accompanied by a further fusion and incorporation of dictyosome vesicles.  相似文献   

7.
Protoplasts ofMarchantia polymorpha L. were isolated from suspension cells. Regeneration of cell walls on the surface of the protoplasts began within a few hr of cultivation. New cell walls completely covered the surface of the protoplasts within 48 hr. Coumarin and 2,6-dichlorobenzonitrile treatment inhibited the formation of the new cell wall. In the initial stage of cell wall regeneration, endoplasmic reticula developed remarkably close to the plasma membrane in the protoplasts, but no development of Golgi bodies was observed at the same locus. This may suggest that the Golgi bodies do not play an active role in the cell wall formation, at least not in very early periods of cell wall regeneration. The development of endoplasmic reticula and an ultrastructural change of plasma membrane from smooth to rough may be important in the cell wall formation of protoplasts.  相似文献   

8.
Summary The interphase meristematic root cells ofAdiantum capillus venerispossess a well developed cytoskeleton of cortical microtubules (Mts), which disappear at prophase. The preprophase-prophase cells display a well organized preprophase microtubule band (PMB) and a perinuclear Mt system. The observations favour the suggestion that the cell edges included in the PMB cortical zone possess a Mt organizing capacity and thus play an important role in PMB formation. The perinuclear Mts are probably organized on the nuclear surface. The preprophase-prophase nuclei often form protrusions towards the PMB cortical zone and the spindle poles, assuming a conical or rhomboid shape. Mts may be involved in this nuclear shaping.Reinstallation of cortical Mts in dividing cells begins about the middle of cytokinesis with the reappearance of short Mts on the cell surface. When cytokinesis terminates, numerous Mts line the postcytokinetic daughter wall. Many of them converge or form clusters in the cytoplasm occupying the junctions of the new and the old walls. In the examined fern, the cortical Mt arrays seem to be initiated in the cortex of post-cytokinetic root cells. A transitory radial perinuclear Mt array, comparable to that found in post-telophase root cells of flowering plants, was not observed inA. capillus veneris.  相似文献   

9.
Summary The development of mestome sheath cells ofAegilops comosa var.thessalica was studied by electron microscopy. Anatomical and cytological observations show that this grass belongs to the C3 or non-Kranz plants. In the asymmetrically thickened walls of mestome sheath cells a suberized lamella is present. This lamella is deposited asynchronously. In the midrib and the large lateral bundles it appears first in the outer and inner walls and usually later in the radial walls. In the small lateral bundles its appearance is delayed in the inner walls of those cells situated on the xylem side. At maturity the suberized lamella is observed in all cell walls; however, in the small lateral bundles it is partly or totally absent from the walls of some cells situated on the xylem side. Tertiary wall formation is asynchronous as well, for it generally follows the deposition pattern of the suberized lamella.During the development of the mestome sheath cells microtubules show marked changes in their number and orientation, being fewer and longitudinal during suberin deposition. Dictyosomes are very active and may be involved in primary and tertiary wall formation. Endoplasmic reticulum cisternae are abundant and partly smooth, while plasmalemmasomes may function to reduce the plasmalemma extension. However, cytoplasmic structures that are clearly involved in suberin synthesis could not be identified.Suberized lamellae react strongly with silver hexamine. This is probably due to post-fixation with osmium tetroxide.On the basis of structural characteristics the mestome sheath may be regarded as an endodermis (cf., alsoFahn 1974). The significance of this view for water and assimilate exchange between the mesophyll and the bundle is discussed.This report represents a portion of a doctoral dissertation.  相似文献   

10.
Closterium acerosum (Schrank) Ehrenberg cells cultured on cycles of 16 h light and 8 h dark, undergo cell division synchronously in the dark period. After cell division, the symmetry of the daughter semicells is restored by controlled expansion, the time required for this restoration, 3.5–4 h, being relatively constant. The restoration of the symmetry is achieved by highly oriented surface expansion occurring along the entire length of the new semicell. During early semicell expansion, for about 2.5 h, microfibrils are deposited parallel to one another and transversely to the cell axis on the inner surface of the new wall. Wall microtubules running parallel to the transversely oriented microfibrils are observed during this period. About 2.5 h after septum formation, preceding the cessation of cell elongation, bundles of 7–11 microfibrils running in various directions begin to overlay the parallel-arranged microfibrils already deposited. In the fully elongated cells, no wall microtubules are observed.  相似文献   

11.
Summary Based on precise information about the orientations of cellulose microfibrils (CMFs) in the secondary cell wall of theEquisetum hyemale root hair, a geometrical model was recently put forward to account for the deposition orientation of CMFs. The model supposes that synthases spin out the CMFs and that geometrical laws dictate their movement. Taking space-limiting conditions into account, CMF orientation is dependent on cell morphology, the amount of other wall molecules adhering to the CMFs, and the number and distribution pattern of synthases. In the present paper this geometrical model for CMF deposition is further applied to nontip-growing angular cells with varying diameters, cells with tapering morphology, various distribution patterns of synthases, various matrix/fibril ratios, and intercalarily elongating cells. The model can accurately predict the actual wall textures in a great variety of cell walls. In the proposed model for CMF orientation, microtubules are not required as cellular guiding structures for the CMFs, not even in elongating walls. They are supposed to be involved in cell elongation, possibly by delivering wall material including CMF synthases.Abbreviation CMF cellulose microfibril  相似文献   

12.
Cocoyam (Xanthosoma sagittifolium) is an important tuber crop in most tropical zones of Africa and America. In Cameroon, its cultivation is hampered by a soil-borne fungus Pythium myriotylum which is responsible for root rot disease. The mechanism of root colonisation by the fungus has yet to be elucidated. In this study, using microscopical and immunocytochemical methods, we provide a new evidence regarding the mode of action of the fungus and we describe the reaction of the plant to the early stages of fungal invasion. We show that the fungal attack begins with the colonisation of the peripheral and epidermal cells of the root apex. These cells are rapidly lost upon infection, while cortical and stele cells are not. Labelling with the cationic gold, which binds to negatively charged wall polymers such as pectins, is absent in cortical cells and in the interfacial zone of the infected roots while it is abundant in the cell walls of stele cells. A similar pattern of labelling is also found when using the anti-pectin monoclonal antibody JIM5, but not with anti-xyloglucan antibodies. This suggests that early during infection, the fungus causes a significant loss of pectin probably via degradation by hydrolytic enzymes that diffuse and act away from the site of attack. Additional support for pectin loss is the demonstration, via sugar analysis, that a significant decrease in galacturonic acid content occurred in infected root cell walls. In addition, we demonstrate that one of the early reactions of X. sagittifolium to the fungal invasion is the formation of wall appositions that are rich in callose and cellulose.  相似文献   

13.
The cell walls in the new white roots of jack pine (Pinus banksiana Lamb.) were observed to constrict around the shrinking protoplast of osmotically stressed roots, and pressure was maintained via an apparent adjustment of cell-wall size and elasticity. These elastic alterations of the cell wall permitted the root cells to maintain full turgor despite the loss of most of the water in the tissue. The constriction of the root cell wall around the dehydrating protoplasts to maintain turgor may reflect changes in cell wall structure. We found that these shrinking root cells synthesize and secrete into the intercellular fluid a set of proteins. These proteins become tightly associated (i.e. guanidine HCl- and sodium dodecyl sulfate-insoluble) with the cell wall but can be released from the matrix, after briefly boiling in 0.1% sodium dodecyl sulfate, by the combination of guanidine HCl, CaCl2 and dithiothreitol. However, these cell-wall proteins became insoluble with time. The proteins could subsequently be destructively extracted from the wall with acid NaClO2 treatments. After these proteins were incorporated into the cell walls, the roots adopted a new, smaller maximal tissue volume and elastic coefficients returned to normal levels. Received: 8 July 1998 / Accepted: 19 November 1998  相似文献   

14.
The cold stability of microtubules during seasons of active and dormant cambium was analyzed in the conifers Abies firma, Abies sachalinensis and Larix leptolepis by immunofluorescence microscopy. Samples were fixed at room temperature and at a low temperature of 2–3°C to examine the effects of low temperature on the stability of microtubules. Microtubules were visible in cambium, xylem cells and phloem cells after fixation at room temperature during seasons of active and dormant cambium. By contrast, fixation at low temperature depolymerized microtubules in cambial cells, differentiating tracheids, differentiating xylem ray parenchyma and phloem ray parenchyma cells during the active season. However, similar fixation did not depolymerize microtubules during cambial dormancy in winter. Our results indicate that the stability of microtubules in cambial cells and cambial derivatives at low temperature differs between seasons of active and dormant cambium. Moreover, the change in the stability of microtubules that we observed at low temperature might be closely related to seasonal changes in the cold tolerance of conifers. In addition, low-temperature fixation depolymerized microtubules in cambial cells and differentiating cells that had thin primary cell walls, while such low-temperature fixation did not depolymerize microtubules in differentiating secondary xylem ray parenchyma cells and tracheids that had thick secondary cell walls. The stability of microtubules at low temperature appears to depend on the structure of the cell wall, namely, primary or secondary. Therefore, we propose that the secondary cell wall might be responsible for the cold stability of microtubules in differentiating secondary xylem cells of conifers.  相似文献   

15.
Summary Caulonema tip cells ofFunaria deposit new oblique cross walls of specific morphology and placement by a highly defined reorientation mechanism. In the presence of the purported intracellular Ca2+ antagonist 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8), these cross walls form in the proper place but exhibit a distorted morphology. Video microscopy indicates that the deformation takes place during the reorientation of the cell plate from a perpendicular to an oblique configuration. Electron micrographs of TMB-8 treated cells indicate a stabilization of phragmoplast microtubules and a greater amount of vesicles and membrane in the developing cell plate. TMB-8 treated cells also show intense chlortetracycline fluorescence from mitochondria, vesicles and endoplasmic reticulum as compared to untreated cells indicating that TMB-8 is blocking release of Ca2+ from intracellular stores. It is concluded that this may cause distortation of cross walls as they form by delaying vesicle fusion, stabilizing microtubules, and increasing the amount of new wall material in the developing cell plate.Abbreviations CTC chlortetracycline - OsFeCN osmium ferricyanide method - TMB-8 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate  相似文献   

16.
This article explores root epidermal cell elongation and its dependence on two structural elements of cells, cortical microtubules and cellulose microfibrils. The recent identification of Arabidopsis morphology mutants with putative cell wall or cytoskeletal defects demands a procedure for examining and comparing wall architecture and microtubule organization patterns in this species. We developed methods to examine cellulose microfibrils by field emission scanning electron microscopy and microtubules by immunofluorescence in essentially intact roots. We were able to compare cellulose microfibril and microtubule alignment patterns at equivalent stages of cell expansion. Field emission scanning electron microscopy revealed that Arabidopsis root epidermal cells have typical dicot primary cell wall structure with prominent transverse cellulose microfibrils embedded in pectic substances. Our analysis showed that microtubules and microfibrils have similar orientation only during the initial phase of elongation growth. Microtubule patterns deviate from a predominantly transverse orientation while cells are still expanding, whereas cellulose microfibrils remain transverse until well after expansion finishes. We also observed microtubule-microfibril alignment discord before cells enter their elongation phase. This study and the new technology it presents provide a starting point for further investigations on the physical properties of cell walls and their mechanisms of assembly.  相似文献   

17.
Summary The role of microtubules in tracheary element formation in cultured stem segments ofColeus has been investigated through the use of the antimicrotubule drug, colchicine. Colchicine treatment of the cultured stem segments produced a dual effect on xylem differentiation. If applied at the time of stem segment isolation or shortly thereafter, wound vessel member formation is almost completely blocked. However, if colchicine is applied after the third day of culture, it does not inhibit differentiation, but instead large numbers of xylem elements are formed which have highly deformed secondary walls. Both effects are related to colchicine's specific affinity for microtubules. In the first case it is shown that colchicine blocks mitosis, presumably by destroying the spindle apparatus, and thus inhibits divisions which are prerequisite for the initiation of xylem differentiation. While, if colchicine is applied after the necessary preparative divisions have taken place, it destroys specifically the cortical microtubules associated with the developing bands of secondary wall, thus causing aberrant wall deposition.Light and electron microscopic analysis of drug-treated cells reveals that the secondary wall becomes smeared over the surface of the primary wall and does not retain the discrete banded pattern characteristic of secondary thickenings in untreated cells. Examination of colchicine-treated secondary walls in KMnO4 fixed material shows that in the absence of microtubules the cellulose microfibrils lose their normal parallel orientation and are deposited in swirls and curved configurations, and often lie at sharp angles to the axis of the secondary wall band. Microtubules, thus, appear to play a major role in defining the pattern of secondary wall deposition and in directing the orientation of the cellulose microfibrils of the wall. Factors in addition to microtubules also act in controlling the secondary wall pattern, since we observe that even in the absence of microtubules secondary thickenings of two adjacent xylem elements are deposited directly opposite one another across the common primary wall.  相似文献   

18.
B. Galatis 《Planta》1988,176(3):287-297
When cell divisions have ceased, the epithem of the hydathodes of Pilea cadierei Gagnep. et Guill. consists of small polyhedral cells exhibiting a meristematic appearance, and completely lacks intercellular spaces. The cortical microtubules in epithem cells exhibit a unique organization: they are not scattered along the whole wall surface but form groups lying at some distance from each other. In sections, from two to eight groups of microtubules can be observed, each lining a wall region averaging between 0.5 and 1.5 m in length. These groups represent sections of microtubule bundles girdling a major part or the whole of the cell periphery. They are connected to one another by anastomoses, forming a microtubular reticulum. The assembly of microtubule bundles is followed by the appearance of distinct local thickenings in the adjacent wall areas. The cellulose microfibrils in the thickenings are deposited in parallel to the underlying microtubules. Gradually, the vacuolating epithem cells undergo swelling, except for the areas bounded by the wall thickenings. Since the latter, and actually their constituent bundles of cellulose microfibrils, cannot extend in length the differential cell growth results in schizogenous formation of intercellular spaces between contiguous cell walls at their thickened regions. The spaces then broaden and merge to become an extensive intercellular space system. As a result of the above processes, the epithem cells become constricted and finally deeply lobed. The observations show that (i) the cortical microtubules are intimately involved in the morphogenesis of the epithem cells and (ii) the initiation and development of the epithem intercellular spaces is a phenomenon directly related to cell morphogenesis and therefore to the cortical microtubule cytoskeleton. The sites of initiation of these spaces are highly predictable.  相似文献   

19.
Summary The influence of the microtubule disorganizing substances amiprophos-methyl (APM) and colchicine on secondary wall formation inMicrasterias denticulata was investigated by the freezeetch technique. The results reveal that neither microtubule inhibitor changes the pattern of microfibril deposition. The application of APM or colchicine also does not cause any structural alterations of the microfibrils or of the protoplasmic (Pf) and the exoplasmic (Ef) fracture face of the plasma membrane, thus indicating that microtubules are not involved in secondary wall formation inM. denticulata. However, since areas of the plasma membrane which collapsed upon freeze-etching are restricted to the Pf-face of cells treated with microtubule inhibitors, cortical microtubules may function as mechanical support during secondary wall formation. In the cortical cytoplasm filamentous structures are found in close spatial relationship and an almost parallel alignment to rosettes of the plasma membrane.  相似文献   

20.
Summary The development of wall ingrowths in leaf blade epidermal cells of the marine angiospermZostera capensis was studied by electron microscopy. Prior to the appearance of ingrowths long profiles of endoplasmic reticulum cisternae become arranged peripherally closely following the contours of the walls. The plasmalemma assumes a wavy appearance and in regions where wall ingrowths first start forming (i.e., along the radial, inner tangential and transverse walls) the plasmalemma becomes separated from the walls by an undulating extracytoplasmic space. Small, irregular projections of secondary wall material make their appearance here. Paramural bodies, dictyosomes, endoplasmic reticulum (ER) and possibly also microtubules seem to be closely associated with the initiation and subsequent development of wall projections. As the cells mature, new ingrowths arise in a centrifugal direction along the radial and transverse walls. When wall ingrowths reach a certain stage of their development, mitochondria become strongly polarized towards them and become closely associated with the plasmalemma which ensheaths the ingrowths. There is often also a close association between ER cisternae and the involuted plasmalemma of the wall projections. Initially ingrowths are slender, curved structures, but become more complex as the cells mature. Ingrowths are most extensively developed along the inner tangential and transverse walls. As epidermal cells age there is a loss of wall material from the ingrowths. The probable significance of the formation of wall ingrowths in the epidermal cells is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号