首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
GCN2 is a protein kinase that stimulates translation of GCN4 mRNA in amino acid-starved cells by phosphorylating the alpha subunit of translation initiation factor 2 (eIL-2). We isolated multicopy plasmids that overcome the defective derepression of GCN4 and its target genes caused by the leaky mutation gcn2-507. One class of plasmids contained tRNA(His) genes and conferred efficient suppression only when cells were starved for histidine; these plasmids suppressed a gcn2 deletion much less efficiently than they suppressed gcn2-507. This finding indicates that the reduction in GCN4 expression caused by gcn2-507 can be overcome by elevating tRNA(His) expression under conditions in which the excess tRNA cannot be fully aminoacylated. The second class of suppressor plasmids all carried the same gene encoding a mutant form of tRNA(Val) (AAC) with an A-to-G transition at the 3' encoded nucleotide, a mutation shown previously to reduce aminoacylation of tRNA(Val) in vitro. In contrast to the wild-type tRNA(His) genes, the mutant tRNA(Val) gene efficiently suppressed a gcn2 deletion, and this suppression was independent of the phosphorylation site on eIF-2 alpha (Ser-51). Overexpression of the mutant tRNA(Val) did, however, stimulate GCN4 expression at the translational level. We propose that the multicopy mutant tRNA(Val) construct leads to an accumulation of uncharged tRNA(Val) that derepresses GCN4 translation through a pathway that does not involve GCN2 or eIF-2 alpha phosphorylation. This GCN2-independent pathway was also stimulated to a lesser extent by the multicopy tRNA(His) constructs in histidine-deprived cells. Because the mutant tRNA(Val) exacerbated the slow-growth phenotype associated with eIF-2 alpha hyperphosphorylation by an activated GCN2c kinase, we suggest that the GCN2-independent derepression mechanism involves down-regulation of eIF-2 activity.  相似文献   

10.
11.
12.
W Xiao  G H Rank 《Génome》1990,33(4):596-603
Mutant regulatory loci of the branched pathway for the biosynthesis of isoleucine-valine and leucine were identified with the unusual phenotype of an amino acid dependent auxotrophy. Two mutant loci, bcs1 and bcs2, conferred branched chain amino acid sensitivity and showed independent segregation. Linkage studies defined bcs1 as a cis-acting regulatory site of ILV2 (SMR1). ILV2 upstream deletion analyses and high-copy transformation of the positive regulatory locus LEU3 ruled out the possibility of LEU3 protein binding palindromes mediating the branched chain amino acid dependent auxotrophy. In the presence of leucine and valine, the general amino acid control system (GCN4) was epistatic to bcs1 and bcs2, and under nonstarvation conditions GCN4 strains showed an increased acetolactate synthase activity over gcn4 strains. Thus in addition to general regulation of ILV2, GCN4 functions in basal level expression when the locus is subject to specific repression by pathway end product.  相似文献   

13.
14.
15.
W Xiao  G H Rank 《Génome》1988,30(6):984-986
The yeast ILV2 gene encodes acetolactate synthase, the first enzyme in the biosynthesis of isoleucine and valine. Its multiple regulation has precluded the clear demonstration of whether ILV2 is under general amino acid control. Nonderepressible gcn4 strains were used as recipients for transformation with a YCp plasmid carrying GCN4. Parental gcn4 cells and their isogenic GCN4 transformants were evaluated for ALS derepression following induced amino acid starvation. GCN4 cells showed 1.5- to 1.7-fold derepression but no derepression was observed in isogenic control gcn4 strains. A similar depression of ILV2 mRNA was also observed. Genetic evidence for general amino acid control was the gcn4 suppression of high level resistance to sulfometuron methyl by the SMRI-410 allele of ILV2.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号